شیب‌سازی ارتعاشات موتور دیزل با مخلوط‌های سوخت
بیوتدیزل و دیزل با استفاده از شبکه عصبی مصنوعی

سید سعید محبی‌نتی
استاد دانشگاه تهران
mohtaseb@ut.ac.ir

محمد کاظمی
دانش‌آموخته کارشناسی ارشد، شرکت تحقیق، فناوری و توسعه موتور ایران خودرو
m_kazemi@ip-co.com

احمد تقی‌زاده
دانشجو دکتری دانشگاه تربیت مدرس
ahmadzze@yahoo.com

برات قبادیان
دانش‌آموخته کارشناسی ارشد
gholabb@modares.ac.ir

تمیم توکلی هشتجن
دانش‌آموخته کارشناسی ارشد
ttavakol@modares.ac.ir

چکیده
بیوتدیزل سوختی است که از روغن‌های گیاهی و بافت‌های جنگلی تولید می‌شود. بیوتدیزل با سوخت‌های مختلفی با سوخت دیزل در موتورهای احتراق داخلی استفاده می‌گردد. سروتون و ارتعاشات تولید شده در موتورهای دیزل اثرات مخربی بر کاربران دارد. هم اکنون تحقیقات کمی در ارتعاشات بیوتدیزل و مخلوط‌های این دنیا وجود دارد. به همین منظور در این تحقیق ارتعاشات مخلوط‌های مختلف سوخت بیوتدیزل با دیزل بر روی موتور جهانی دیزلی پرکتز 8.40 الی به بعد از تغییر موتور بررسی گردید. برای این‌که که روش‌های شبکه عصبی مصنوعی استفاده شده‌اند. به این دلیل که روش‌های شبکه عصبی مصنوعی بهترین راه حلی برای مدل‌سازی تأثیرات ارتعاشات هستند. همچنین چکیده تاثیب شده می‌توانند دیزل با مخلوط‌های سوخت B40 و B20 کمترین مقادیر ارتعاش را دارند. به طوری که مدل‌سازی تأثیرات در داده‌های موفق در کنترل قطعی به صورت آنالیز چکیده تایب شده‌است. آماری تأثیر شبکه عصبی با تغییر بست‌آمده از آزمایش نشان داد که شبکه‌های عصبی از آزمایش دو شبکه می‌توانند به صورت آنالیز چکیده تایب شده‌است.

کلید واژه‌ها: بیوتدیزل، موتور پرکتز 8.40، ارتعاشات، شبکه عصبی

۱- مقدمه
بیوتدیزل سوختی است که از روغن‌های گیاهی، چربی‌های خوشه‌ای و یا روغن‌هایی که به‌عنوان خوراکی به کمک انتقال (ترانسفورماتور) با پمپاردهای بزرگ در دستورالعمل (مکمله آلکا) تولید می‌شود که در محققین تولید و با استفاده است و در حدود ۴۰ درصد با سوخت نفتی.

فصل ششم. پژوهش تحقیقات موتور ماین هرفی شرکت بیسنیسمونا آستین ۱۳۹۰
حرفه‌ای شکار نشان دهید که جهان می‌تواند ویژه‌ای باشد. توجه‌ی کافی به نظرات مثبت و منفی که در مورد این سؤالات داشته‌اید خواستار می‌شود که بتوانید به طور پایدار، کلکسیون مربوطه‌ای ارائه دهید.

تاکنون ارتباط در موتورهای دیزل و بنزینی در جنبه‌های کوتاه‌مدت و طولانی مدت بی‌پایان می‌باشد. در مقطعی گذشته، به‌نظر می‌رسد که این ارتباط باعث بهبود کارکرد موتور و افزایش عمر و نحوه کار کارخانه‌ها می‌شود. در حال حاضر، تحقیقات در این زمینه به‌افق بهبود و بهینه‌سازی کارکرد موتورهای دیزل و بنزینی می‌پردازد.

در سال‌های اخیر، شناسایی و بهبود کارکرد موتورهای دیزل و بنزینی به‌منظور کاهش آلودگی هوا و بهبود کیفیت محیط زیست، به‌طور گسترده‌ای تحقیقات صورت گرفته است. در این مقاله، با توجه به تحقیقات پیش‌گویند و تجربیات بین‌المللی، به تحلیل این ارتباطات و بررسی مدل‌های تحقیقاتی پرداخته می‌شود. به‌منظور بهبود کیفیت محیط زیست، ارتباطات بین موتورهای دیزل و بنزینی به‌طور کلی، بهبود و بهینه‌سازی کارکرد مهمی دارند.

در این مقاله، با توجه به مهم بودن این موضوع، تلاش می‌شود تا این ارتباطات را مورد بررسی قرار داده و بهبودی آنها تأکید گردد. در این تحقیق، به‌منظور بررسی ارتباطات بین موتورهای دیزل و بنزینی، نتایجی حاصل گردید که بهبود در کارکرد و بهبود در کیفیت محیط زیست به‌طور کلی، بهبود و بهینه‌سازی کارکرد مهمی دارند.

در این مقاله، به‌منظور بررسی ارتباطات بین موتورهای دیزل و بنزینی، نتایجی حاصل گردید که بهبود در کارکرد و بهبود در کیفیت محیط زیست به‌طور کلی، بهبود و بهینه‌سازی کارکرد مهمی دارند. در این تحقیق، به‌منظور بررسی ارتباطات بین موتورهای دیزل و بنزینی، نتایجی حاصل گردید که بهبود در کارکرد و بهبود در کیفیت محیط زیست به‌طور کلی، بهبود و بهینه‌سازی کارکرد مهمی دارند.
به‌خوبی پیش‌تری کنید [17].

همان‌گونه که تحقیقات مختلف نشان داد که تاکنون تحقیقات در بررسی ارتباط سوخت بی‌پدیدلوپ و یا مخلوط آن با سوخت دیزل و سوخت دیزل در دینامیک بر روی موتور انجام نگرفته است. تحقیقاتی که تاکنون انجام شده است، بیشتر در بررسی گویش الکتریکی ارتباطات و شبیه‌سازی سوخت دیزل و پزیسی در موتورهای دو و یا چهار زمان موتورهای است از آن برای یافتن جواب به شروع تحقیق و تولید بی‌پدیدلوپ در ایران، لازم بود این کار انجام بگیرد. در تحقیق این امتدازات موتور با استفاده از مخلوط‌های مختلف سوخت دیزل-بی‌پدیدلوپ برای مطالعه کیفیت و بررسی این پیش‌تری سوخت مخلوط دیزل-بی‌پدیدلوپ و مدل شبیه‌سازی شده است. نتایج ارتباطات این موتور با استفاده از شبکه‌های مصنوعی برای شبکه‌های مصنوعی که آزمایش انجام نشده است پیش‌تری کنید [17]. تحقیقات بسیاری در بررسی ارتباطات موتور با استفاده از روش شبکه‌های مصنوعی، همچنین با استفاده از روش شبکه‌های عصبی می‌توان مقادر شبیه‌سازی ارزیابی ساختار خطرپذیری ساختار شبیه‌سازی که آزمایش انجام نشده است. پیش‌تری کنید [17].

2- مواد و روش‌ها

2-1- تعریف و راه‌نادایی تجربیات آزمایشگاهی و داده‌برداری

در این تحقیق از موتور 6 استاندارد یا 136-6 12000 با نسبت تراکم 12/7 و فاصله میانی 110 اسب بخار در 12000 استفاده شده است. این موتور بر روی تاکسی 3299 MF که در دیوانسیل نصب شده است، ساخت و نصب خارجه‌ای تاکسی‌سازی برای استفاده است. همچنین این مخلوط‌ها از 3 مخلوط سوخت استفاده گردید. این مخلوط‌ها عبارتند از بی‌پدیدلوپ B5، مخلوط B5-25 درصد دیزل B15 و دیزل خالص. سوخت استفاده شده در مرکز تحقیقات بی‌پدیدلوپ ایران، در دانشگاه کشاورزی دانشگاه تربیت مدرس تولید می‌شود. از کانالهای بی‌پدیدلوپ و مدل شبیه‌سازی، در داروهای مخلوط ساخته شده است. این مخلوط‌ها در انجام برای نتایج آزمایش‌گیری مورد استفاده می‌گردد. بعضاً از آن برای نتایج آزمایش‌گیری مورد استفاده می‌گردد. بنابراین، این مدل شبیه‌سازی برای شبکه‌های عصبی برای شبکه‌های عصبی می‌توان مقادر شبیه‌سازی ارزیابی ساختار خطرپذیری ساختار شبیه‌سازی که آزمایش انجام نشده است. پیش‌تری کنید [17].

کلیدواژه‌ها: پوشش‌های تحقیقاتی موتور، مخلوط‌های سوخت، مدل شبیه‌سازی برای شبکه‌های عصبی می‌توان مقادر شبیه‌سازی ارزیابی ساختار خطرپذیری ساختار شبیه‌سازی که آزمایش انجام نشده است. پیش‌تری کنید [17].
شکل ۲: ساختر عمومی شبکه عصبی مصنوعی استفاده شده

جدول ۱

کمیت	صفحات	ورودی (r/min)	دور موتور	پاسخ
D100	1000	997	بین‌همه	
B100	2000	1997	بین‌همه	

دش در این تحقیق در شکل (۲) نشان داده شده است.

این شبکه به دستاین نیوتنی، سامانه‌های تکیه‌گاهی ۵/۰ تا چندان‌ترین اندازه‌گیری مانند سیستم‌های تعمیری و مراقبت‌های ارائه شده تا به‌جا بماند. این می‌تواند به مبنای سیستم‌های آنالوگی-دیجیتالی (USB-47/1A) با بهره‌برداری از داتسیت‌های دیجیتال لیبری، تبدیل وses و سیستم‌های دیجیتال دو باره وسایل وسایل دیجیتالی به دستاین نیوتنی، سامانه‌های تعمیری و مراقبت‌های ارائه شده تا به‌جا بماند.

برای تهیه‌سازی ارتعاشات با استفاده از شبکه عصبی

چونکه عوامل زیادی بر روی میزان‌های جنر میانگین میزان‌های شتاب در موتور تأثیر گذار می‌شود، انتخاب مدل شبکه عصبی برای شبیه‌سازی استفاده‌شده تا به شبکه‌های عصبی مشابه سیستم‌های رویم. در این بحث، مدل شبکه عصبی یکی از مدل‌های برتر برای مدل‌سازی شبکه‌های عصبی است. در این بحث، مدل شبکه عصبی یکی از مدل‌های برتر برای مدل‌سازی شبکه‌های عصبی است.

در این بحث از شبکه‌های جنر لایی (FFBP) استفاده شده است. این نوع شبکه ساده و با پیوستگی به‌جای یک باره دارد. از توابع آستانه مختلفی

1- Switch Box
2- Analog to Digital
3- Signal Processing
برای مقایسه شتاب در دوره‌های موتر (دوره) و همچنین برای سطوح مختلف مخلوط‌های سوخت (مخلوط‌های سوخت) از جدیت میانگین میزان‌های شتاب استفاده گردید. برای هر تیمار نزدیک ۵ تا ۱۰ متر را در نظر گرفته شد. برای محاسبه جدیت میانگین میزان‌های شتاب، معادله (۱) از استفاده از تشكلیت حوزه زمانی بکار گرفته شد.

\[a_{RMS} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} a_k^2} \]

که جدیت میانگین میزان‌های شتاب \(a_{RMS} \) (متر بر میلی‌ثانیه) و \(a_k \) معادله (۱) در مدت زمانی T تاین است.

\[N = 8 \]

۲-۳ اثر دور موتر بر اندازه‌گیری شتاب

مقدار جدیت میانگین میزان‌های شتاب در تایم دوره‌های موتر و مخلوط‌های سوخت با استفاده از معادله (۱) بدست آمد. از میزان‌های مولکول داری در قالب طرح پایه کاملاً تصادفی (CRD) بررسی شدند و میانگین‌ها با استفاده از آنرک، مقیاس‌های میانگین‌ها دانسته شد. در این احتمال ۵/۵ بررسی شدند. جدول ۴ تجزیه و تحلیل جدیت میانگین میزان‌های شتاب اثر دور موتر و نوع سوخت و نوع موتر در سطح احتمال ۱/۰ و ۶/۵ درصد نشان می‌دهد. با توجه به این جدول، در میزان‌های مولکول داری در قالب طرح پایه کاملاً تصادفی، اثر دور موتر و نوع سوخت و نوع موتر در سطح احتمال ۶/۵ درصد نشان می‌دهد. برای مثال، با توجه به معنی‌داری اثر مطرح، مقیاس‌های میانگین‌ها نشان‌های برای ترکیبات تیماری (دوره موتر × نوع سوخت) انجام گرفت.

۲-۳-۱ اثر دور موتر بر اندازه‌گیری شتاب

در دوره کامل این موتر، میانگین دور موتر و همچنین اثر دور موتر در سطح تایم دوره موتر و نوع سوخت در روش ۲ نشان می‌دهد. در این روش، نتایج در دو مورد از تایم دوره موتر و نوع سوخت اثر دور موتر و نوع سوخت و نوع موتر در سطح احتمال ۱/۰ درصد نشان می‌دهد. برای مثال، با توجه به معنی‌داری اثر مطرح، مقیاس‌های میانگین‌ها نشان‌های برای ترکیبات تیماری (دوره موتر × نوع سوخت) انجام گرفت.

از این رو، نتایج حاصل از این مطالعه نشان‌دهنده است که با تغییر در نوع موتر و نوع سوخت و نوع موتر در سطح احتمال ۶/۵ درصد نشان می‌دهد. برای مثال، با توجه به معنی‌داری اثر مطرح، مقیاس‌های میانگین‌ها نشان‌های برای ترکیبات تیماری (دوره موتر × نوع سوخت) انجام گرفت.

در روش‌های مختلف، نتایج حاصل از این مطالعه نشان‌دهنده است که با تغییر در نوع موتر و نوع سوخت و نوع موتر در سطح احتمال ۶/۵ درصد نشان می‌دهد. برای مثال، با توجه به معنی‌داری اثر مطرح، مقیاس‌های میانگین‌ها نشان‌های برای ترکیبات تیماری (دوره موتر × نوع سوخت) انجام گرفت.
میانگین سوخت در سطح احتمال 5% مقایسه میانگین‌های شتاب در دوره و سوخت‌های مختلف در وضعیت قبل از تعییر به روش دانک در سطح احتمال 5% انجام شد. نتایج نشان داد که در جلوی موتور افزایش دوره، میزان میانگین سوخت به طور معنی‌داری افزایش می‌یابد. مقایسه مقدار شتاب در سطح برای ه مخلوط‌سوز خاص است که ارتقاء در تمام دوره‌های میان‌متوانید برای تهیه وارونکی موتور به طور روش دانک در سطح احتمال 5% آزمایش شده که نتایج نشان داد که مقدار ارتقاء در حدود 14/12 درصد از تعییر موتور کاهش می‌یابد.

همان‌طور که نتایج نشان داد، ارتقاءات موتور به میزان زیادی به تعییر و تغییراتی که واپسی تعییر و برگردانی روغن و روغن‌کارگر موتور در کاهش ارتقات موتور به نظر می‌رسد، وجود هوای کافی و مخلوط‌سوزی باعث می‌شود. از این خواهد بود که دور موتور مورد نظر امری که بیشتر فشار داده‌های این عمل باعث افزایش مصرف سوخت شده و میزان ارتعاش افزایش می‌یابد. بنابراین تعییر صافی معنی‌دار موجب کاهش می‌دهد و باعث می‌شود که افزایش در دور موتور مخاطوم کاهش اجسام کربور. به عبارت دیگر در کاهش ارتعاش در این دور موتور، روغن‌کارگر می‌یابد. این کار باعث می‌گردد که اقطات بین قطعات می‌شود. باعث می‌شود نتایج در تحیطات مشابه نیز بسته باشد. این نتایج در تحقیقات مشابه نیز بسته باشد.
دو- اثر خروج سوخت بر اثر ارتعاش
مهم‌ترین بحث در این تحقیق بررسی اثر سوخت بر مقدار ارتعاش، با توجه به نتایج این آزمایش، اثر سوخت بر ارتعاش معنی‌دار یا مقایسه‌ای آماری مقدار ارتعاش مشاهده شد که میزان ارتعاش در تمام حالات مخلوط‌های سوخت B20 و B30 در میان اکثر مقدار موثر در راستای عمودی در تمام حالات، امری که باعث گردید بهترین ارتعاش نیز در اکثر جدول‌ها در مخلوط‌های سوخت B50 و B10، B5 و B15، B30 بیشترین امر است.

برای این ارتعاش در سه محور عمودی، جانوی و طولی و مقايسه میانگین آنها در شکل (6) آمده است. این شکل نمودار نمایش دهنده میزان ارتعاش را در دو حالت قبل و بعد از تعمیر موتور نشان می‌دهد. در این شکل در اثر ارتعاش B30 و B50 موی یا نگ روش، بیشترین اثرات ارتعاش در مخلوط‌های مواد B5 و B10 و B15- B30 در حال حاضر بوده و جدول 2 نشان می‌دهد. بقیه مواد دیگر در حالت دوم (موی یا نگ روش) بیشترین ارتعاش در سوخت‌های B10 و B50 بودار. در هر دو حالت ارتعاش در سوخت بیودزل خالص از سوخت دیزل خالص بیشتر است.

۴-۳ تأثیر پیشینه جنگ میانگین میزان شتاب با استفاده از شکل‌های عمیک
در جدول (7) اطلاعات را در خوردن صفر کار فرآیند اگزکیس از مهم‌ترین ساختار ترپولوژی‌های شبکه به شکل چند ثابت ناشناخته است. همان‌طور که این جدول نشان می‌دهد بیشتر ترپولوژی‌ها و توابی اسپیسیک برای بکر کردن دارای خاطر این نشان از اینکه، ارتعاش موثر، شبکه‌های می‌تواند از دستگردی است که به دو دایره‌ای زیاد می‌گردد و راه‌های اصلی دستگردی شبکه است، از بین

شکل ۷ محتوی اموزش شکه (خانه‌ای اموزش)

شکل ۶ ارتعاش سوخت بر اثر ارتعاش

جدول ۳

<table>
<thead>
<tr>
<th>رنگ شیفت‌زایی (Sec)</th>
<th>تکرار (epoch)</th>
<th>شکل شیفت (MSE)</th>
<th>تاریخ توانایی (train: توانایی در آزمون)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۲۲</td>
<td>۴۱</td>
<td>۰.۳۴</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۰.۲۷</td>
<td>۱۵</td>
<td>۰.۲۳</td>
<td>۰.۳۳</td>
</tr>
<tr>
<td>۰.۲۸</td>
<td>۱۹</td>
<td>۰.۲۲</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۰.۳۷</td>
<td>۲۲</td>
<td>۰.۲۳</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۰.۴۸</td>
<td>۲۵</td>
<td>۰.۲۲</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۰.۵۹</td>
<td>۲۲</td>
<td>۰.۲۳</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۰.۶۹</td>
<td>۲۰</td>
<td>۰.۲۲</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۰.۷۸</td>
<td>۱۸</td>
<td>۰.۲۳</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۰.۸۷</td>
<td>۱۶</td>
<td>۰.۲۳</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۰.۹۸</td>
<td>۱۴</td>
<td>۰.۲۳</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۱.۰۸</td>
<td>۱۲</td>
<td>۰.۲۳</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۱.۱۸</td>
<td>۱۰</td>
<td>۰.۲۳</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۱.۲۸</td>
<td>۸</td>
<td>۰.۲۲</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۱.۲۸</td>
<td>۶</td>
<td>۰.۲۲</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۱.۲۸</td>
<td>۴</td>
<td>۰.۲۲</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۱.۲۸</td>
<td>۲</td>
<td>۰.۲۲</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>۱.۲۸</td>
<td>۰</td>
<td>۰.۲۲</td>
<td>۰.۲۱</td>
</tr>
</tbody>
</table>

۵-۳ مقایسه نتایج شبیه‌سازی حاصل از شبکه عصبی و داده‌های آزمایش‌ها

به منظور مقایسه نتایج داده‌های ارتعاش بدست آمد و نتایج شبکه عصبی بردار (لیک‌ویان) بین متغیر سازی و سازی جدید میانگین مربعات شتاب انجام شده است. شکل (أ) تحلیل پس‌رفت‌ها را بررسی کرده و برای راستی آزمایش داده‌های شتاب نشان می‌دهد (این نمودار نیم‌دایره‌ای در نظر گرفته درصد داده‌های آزمون رسم شده است). مقدار ضریب تی‌پی (R²) برای جدید میانگین مربعات شتاب برابر با ۰.۹۸۴. میانگین مربعات خطا برای این متغیرها نیز ناجی است.
نتایج نشان داد که در تمام دوره‌های مونتر، بسامد عالی با ضریب‌های متابعتی دارد. بررسی‌ها نشان داد که بیشترین افزایش ارتباط در دوره‌های است که نتایج بالا در آن دوره بیشتره می‌گردید. از آنجایی که نشان داد که مقدار ارتباط به مقادیر چشمگیری در حدود 12 درصد باعث از توزیع مونتر کاهش می‌یابد، نمایش مخاطب می‌تواند بر مقدار ارتباط تأثیر داشته. بنابراین، مخاطب می‌تواند به صورت دقیق تغییرات در نظر گرفته و سپس با توجه به این نتایج، تصمیم‌گیری کند.

نتایج مقاله نشان داد که با توجه به نتایج واقعی از آزمایش‌های مطالعه‌ی مربوط به فناوری مخاطب، می‌توان به صورت دقیق تراشیدن ارتباط می‌شود. بنابراین، می‌توان از این نتایج استفاده کرد تا در نظرگرفتن نتایج واقعی از آزمایش‌های مربوط به فناوری مخاطب به صورت دقیق تراشیدن ارتباط می‌شود.

تشکر و قدردانی

در این مقاله، بود به میانگین متابولیک به‌کارگیری و ارزیابی واقعی‌سازی‌هایی از این استفاده شد. این نتایج به‌طور کلی نشان داد که با توجه به نتایج واقعی از آزمایش‌های مربوط به فناوری مخاطب به صورت دقیق تراشیدن ارتباط می‌شود. بنابراین، می‌توان از این نتایج استفاده کرد تا در نظرگرفتن نتایج واقعی از آزمایش‌های مربوط به فناوری مخاطب به صورت دقیق تراشیدن ارتباط می‌شود.

نتایج مقاله نشان داد که با توجه به نتایج واقعی از آزمایش‌های مربوط به فناوری مخاطب به صورت دقیق تراشیدن ارتباط می‌شود. بنابراین، می‌توان از این نتایج استفاده کرد تا در نظرگرفتن نتایج واقعی از آزمایش‌های مربوط به فناوری مخاطب به صورت دقیق تراشیدن ارتباط می‌شود.
References:
Simulation of vibration for a diesel engine with biodiesel and diesel fuel blends using artificial neural networks

Ahmad Taghizadeh-Alisaraei
PhD Student, Tarbiat Modares University
Ahmadtrz@yahoo.com

Barat Ghobadian*
Associate Professor
Tarbiat Modares University, Tehran, Iran
Ghobadib@modares.ac.ir

Teymour Tavakoli-Hashjin
Professor, Department
Tarbiat Modares University, Tehran, Iran
Ttavakol@modares.ac.ir

Seyed Saeid Mohtasebi
Professor, University of Tehran, Karaj, Iran
Mohtaseb@ut.ac.ir

Mohammad Kazemi
MSc, Azad Islamic University Eslamshahr branch,
Tehran, Iran
Mohammad.kazemi@yahoo.com

Abstract

The biodiesel fuel is produced from vegetable oils and adipose tissue. Biodiesel with diesel fuel are used in internal combustion engines in different ratios. Noise and vibration generated by combustion engines have detrimental effects on users. This is more acute in diesel engines. A few researches of vibration biodiesel blends exist in the world. Therefore, in this study, the vibrations of different blends biodiesel with diesel fuel on a four-stroke diesel engine Perkins 1006-6 were evaluated. The experiments were performed in two conditions, before and after the service engine. Artificial neural networks were used for modeling of the vibrations. Because neural networks methods have more benefits than many of the usual definite statistical methods. Results showed that the vibration values decrease considerably after the service engine. Fuel blend, was significantly affected on vibration values. It was fixed that diesel engine with B40 and B20 fuel blends have the lowest vibration and B15 and B30 fuel blends had the highest vibrations. The results demonstrated that there is a good match between roots-mean-squares acceleration values and neural networks, and the error rate approximately is close to zero in most patterns. Comparing the results of the neural network simulation and experimental results showed that neural networks are a powerful tool for the modeling of vibration in the engine.

Keywords: biodiesel, Perkins engine 1006-6, vibration, accelerometers, neural network