شیبی‌سازی ترمودینامیکی عملکرد موتور احتراق داخلی جرقه‌ای با سوخت مخلوط بنزین و گاز طبیعی فشرده به همراه اعتبار بخشی تجربی

چکیده
با توجه به آلودگی‌های زیست محیطی ناشی از موتورهای احتراق داخلی، کاهش مصرف سوخت‌های فسیلی به عنوان جایگزین برای سوخت بنزین مصرفی خودروها بسیار مورد توجه قرار دارد. گاز طبیعی فشرده در جایگاه سوخت کمکی نسبت به بنزین دراز مدت تولید اکسیژن که نیازی به اکسید کردن مونوکسید کربن و هیدروکربن‌های سوخته می‌باشد در این مقاطع از انرژی تأمین می‌شود. لذا مصرف مونوکسید کربن می‌تواند به‌عنوان یکی از راه‌حل‌های مناسب عملکرد موتورهای احتراق داخلی جرقه‌ای به‌شمار اضافه شود. هدف این مقاله از این خواهد بود که عملکرد موتورهای احتراق داخلی جرقه‌ای که در سه حالت مصرف مونوکسید کربن به دو سردسیر مختلف بنزین و گاز طبیعی فشرده را مقایسه کند. نتایج نشان می‌دهد که در حالت مصرف مونوکسید کربن به سوخت بنزین، مصرف بیشتری از سوخت نسبت به حالت مصرف مونوکسید کربن به سوخت گاز طبیعی است و این نتایج با نتایج تحقیقات دیگری مطابقت دارد.

کلیدواژه‌ها: گاز طبیعی فشرده، دو کانن سوز، شیبی‌سازی، ترمودینامیکی، کیفیت سوز

1. مقدمه
منعچ اصلی تأمین انرژی جهان سوخت‌های فسیلی هستند و رشد مصرف انرژی ضمن کاهش منابع و ذخایر موجود با افزایش توییل آلودگی‌های زیست محیطی نیز همراه است که در صورت عدم مراقبت و توان برای
و شیاراد [2] در سال 2009 اولین کنفرانس ترموترانزیتیک مورد استفاده در موتورهای احتراق داخلی جرخهای را بررسی کرده‌اند. نهایت شیپسازی ترموترانزیتیک موتور بنزینی و همچنین چگونگی در نظر گرفتن ترکیب دو سوخت در موتورهای دو سوخت از نظر سه‌بعدی احتراق و نیز سوخت در مقادیر محدود از جمله [2] منتشر شده است. در این شیپسازی مدل‌سازی‌های جامع بر اثر تداخل جرخهای ترکیب احتراق و انباشتهای گازی توسعه داده شده است. در فهرست، چگونگی تغییرات دانل ترموترانزیتیک و شیپسازی مدل‌سازی ترکیب و قرار دادن سوخت مورد بررسی در این مدل‌سازی می‌باشد. هرچند موترهای ترکیب احتراق داخلی جرخهای ترکیب
شیب‌سازی احترق ۲

در این شیب‌سازی احترق به صورت فرآیند ترکیبی شیب‌سازی می‌شود و ناخالصی ماده‌ای با سرعت انتقال شعله نیز ترکیب می‌کند. در هنگام احترق به دو ضلع‌کشی گازهای احترق به دو ضلع‌کشی گازهای سوخته و به جهت شعله از یکدیگر جدا می‌گردند. از

۱. Amended

۲۱
مقدمه به دنبال می‌آید. مدل‌ها و سوالات خیال در جریان هر آن در واکنش

\[a_1 + a_2 + na_3 = n \]

\[2a_1 + a_3 + 2a_5 + 2a_6 + a_7 + a_8 + a_{10} + a_{11} = x + \frac{2}{\phi} \left(n - \frac{m}{4} - \frac{x}{2} \right) \]

\[2a_5 + a_9 + 6a_{12} = \frac{2}{\phi} \left(n - \frac{m}{4} - \frac{x}{2} \right) (3.7619) \]

در جریان پیشرفت واکنش احتمالی، واکنش‌های تجزیه‌ای که به‌صورت

\[CO + \frac{1}{2} O_2 \rightarrow CO_2 \]

\[CO + H_2 O \rightarrow CO_2 + H_2 \]

\[nCO_2 + mCO + 2nH_2 \leftrightarrow C_nH_{2n}O_n + (n - \frac{m}{2})O_2 \]

\[H_2O + \frac{1}{2} N_2 \leftrightarrow H_2 + NO \]

\[O_2 \leftrightarrow 2O \]

\[H_2 \leftrightarrow 2H \]

\[H_2O \leftrightarrow OH + \frac{1}{2}H_2 \]

\[N_2 \leftrightarrow 2N \]

\[2a_1 + a_3 + 2a_5 + 2a_6 + a_7 + a_8 + a_{10} + a_{11} = m \]

\[2a_5 + a_9 + 6a_{12} = \frac{2}{\phi} \left(n - \frac{m}{4} - \frac{x}{2} \right) (3.7619) \]

در جریان پیشرفت واکنش احتمالی، واکنش‌های تجزیه‌ای که به‌صورت

\[CO + \frac{1}{2} O_2 \rightarrow CO_2 \]

\[CO + H_2 O \rightarrow CO_2 + H_2 \]

\[nCO_2 + mCO + 2nH_2 \leftrightarrow C_nH_{2n}O_n + (n - \frac{m}{2})O_2 \]

\[H_2O + \frac{1}{2} N_2 \leftrightarrow H_2 + NO \]

\[O_2 \leftrightarrow 2O \]

\[H_2 \leftrightarrow 2H \]

\[H_2O \leftrightarrow OH + \frac{1}{2}H_2 \]

\[N_2 \leftrightarrow 2N \]
برای محاسبه سطح انتقال کرم برای برش منطقه سوخته و نسخه گچبی مواد مکان زیر استفاده می‌شود [10]:

\[A_f = \frac{\pi}{4} B^2 \left(2 \left[\frac{2r_f}{B} \right]^2 \left[\beta - \alpha \right] \right) \]
(22)

\[V_f = 2\frac{N}{3} \pi r_f^3 \]
(16)

\[A_f = A_{cyl} (1 - \sqrt{h_b}) \]
(23)

\[A_u = A_{cyl} - A_f \]
(24)

\[V_f = \frac{\pi}{8} B^2 \left(\frac{2r_f}{B} \right)^2 \left[(\alpha^2 - \beta^3) - 3(\alpha - \beta) \right] + \frac{2r_f \alpha}{B} \]
(17)

\[V_f = \frac{h_u}{V_u} \]
(25)

\[\alpha = 0 \quad \text{if} \; r_f < \frac{B}{2} \]
(18)

\[\beta = 1 \quad \text{if} \; r_f < \frac{h_{gap}}{r_f} \]
(19)

\[V_f = \frac{h_{gap}}{r_f} \quad \text{if} \; r_f > \frac{h_{gap}}{r_f} \]
(20)

\[\beta = 1 \quad \text{if} \; r_f > \frac{h_{gap}}{r_f} \]
(21)

1. Benson
\[S_L = A(T_0) Y_{F,n} T_n \left(\frac{T_b - T_n}{T_b - T_u} \right) \]

(36)

و در آن، \(K \) کسر جرم سوخت شده، \(T_b \) دمای مرجع سوخت، \(T_u \) دمای شرایط حاصله، \(Y_{F,n} \) ضریب سرعت آرام شعله، \(m, n \) ضرایب حداکثری و \(S_c / s \) تعداد درصدی ضریب سرعت آرام شعله.

\[A(T_0) = F \exp \left(-\frac{G}{T_0} \right) \]

(37)

\[T_b S_c / s = \frac{7780.8}{\left(\frac{T_b}{10000} + \frac{900}{T_b} \right)^{4.38}} p^x \]

(38)

\[S_L = S_{L0} \left(\frac{T_u}{300} \right)^{x_{EGR}} \left(\frac{p}{100} \right)^{y_{EGR}} \]

(39)

در آن، \(S_{L0} \) سرعت آرام محاسبه شده در شرایط حاصله، \(Y_{F,n} \) ضریب سرعت آرام شعله، \(m, n \) ضرایب حداکثری و \(S_c / s \) تعداد درصدی ضریب سرعت آرام شعله.

\[S_f = f \times S_L \]

(40)

\[N = 0.00197 \times N \]

(41)

\[S_f = \phi^{0.26} \times S_L \]

(42)

\[\alpha = 5.75 \phi^2 - 12.15 \phi + 7.98 \]

(43)

\[\beta = -0.925 \phi^2 + 2 \phi - 1.473 \]

(44)

\[S_L = S_{L0} \left(\frac{T_u}{300} \right)^{x_{EGR}} \left(\frac{p}{100} \right)^{y_{EGR}} \]

(45)

\[S_{L0} = 0.2758 - 0.7834 (\phi - 1.21)^2 \]

(46)

\[\text{منسوخانه [18-19]} \]

\[\text{روهمش و سیکر [19]} \]

\[\text{به جمع بندی تعدادی از این نظریه‌ها برخاسته و در پی از یکی از ترتیب‌های نظریه‌ها که در سال 1962 بر اساس نظریه باقی ماند، هوا-پراکنده در غنای یک پیشنهاد داده است، سرعت آرام شعله با سرعت \(\phi \) با دمای منطقه سوخت، دمای منطقه سوخت و فشار استقاص ارتباط دارد.}
مقدار توان x برای هریک از جزئیات ساز انتخابی سوز و گاز سوخت و مقدار p ضریب p در دو مدل سوز به دستور گرمی مختلف گاز می‌باشد در میان این تنظیم الکتره و یک سوخت مصرفی متنوع تقلیل نیاز محوری فشار ت Jeh می‌باشد. این این تغییر با تقاطع آور محتویاتی فشار شیب‌سازی تعیین می‌شود.

کوبش در موتور

زیر تولید موتوکسید بنزین و نیترات بنزین این بسته به وابستگی از ساز و کار (موتورهای مه‌سیسته تولید آن) الیکتره استفاده شده است [25]. برای انتخابی زمان خوشه انتخابی نیز روابط معادله ارائه شده که در هر بر اساس مشخصات ارائه و تنظیم می‌باشد. معادله یا را که در این وابستگی می‌باشد و فشار موتوکسید انتقال داخلی را به دست می‌آورد که نتیجه توجه در تغییر زمان خوشه‌ها در این صورت می‌باشد [26]:

$$\tau = 17.68 \left(\frac{100}{N} \right)^{3.4107} p^{-1.7} \exp \left(\frac{3800}{\sigma} \right)$$ \hspace{1cm} (33)

درست مخاطب (اکتیوپلیزی) انتخاب دارد. ضریب M به عنوان یک تأثیر سوز و دست سوز و مقدار p ضریب p در دو مدل سوز به دستور گرمی مختلف گاز می‌باشد در میان این تنظیم الکتره و یک سوخت مصرفی متنوع تقلیل نیاز محوری فشار ت Jeh می‌باشد. این این تغییر با تقاطع آور محتویاتی فشار شیب‌سازی تعیین می‌شود.

$$Y_{H_2} = \frac{\left[H_2 \right] + \left[H_2 \left(Air \right) \right]_w}{\left[H_2 \right] + \left[H_2 \left(Air \right) \right]_w + [G] + [Air]}$$ \hspace{1cm} (34)

که منظور از $\left[H_2 \right]$ ضریب p به عنوان یک تأثیر سوز و دست سوز و مقدار p ضریب p در دو مدل سوز به دستور گرمی مختلف گاز می‌باشد در میان این تنظیم الکتره و یک سوخت مصرفی متنوع تقلیل نیاز محوری فشار ت Jeh می‌باشد. این این تغییر با تقاطع آور محتویاتی فشار شیب‌سازی تعیین می‌شود.

$$S = S_{L} \left(\frac{\rho_{s} / \rho_{f}}{(\rho_{s} / \rho_{f}) - \alpha_0} \right) x_{0} + 1$$ \hspace{1cm} (31)

در Jest (25) و S، T، و D سیستم مشخص می‌باشد [23، 24، и 26] \hspace{1cm} 1. Yu
4-1 نتایج تجربی

براساس معالات فنی جامک بر موتور، متغیرهای عملکرد شامل توان، کشناور، فشار موست و نرخ ویژه سوخت با کار خروجی از موتور و کار خروجی از آن نیز به نوبه خود با فشار داخل استانه و تغییرات آن با زمان نسبت مستقیم دارد. بیانیات مربوط به مقدارهای فشار استانه در دو حال تجربی و شیب لازم در کنار مقالات متغیرهای عملکرد موتور، روزی قابل اطلاعی برای اعتبار بخشی به شیبسرای انجام گرفته می‌باشد. برای تنظیم و اعتبار بخشی به الگوی توسعه داده شده، از توانی آزمایش‌های انجام گرفته در آزمایشگاه تحقیقاتی آزمون موتور شرکت تحقیق، طراحی و توسعه موتور ایران خودرو (ایتکو) استفاده شده است. در جدول‌های (1) و (2) عناصر سوخت بنزینی و کار ترکیبات سوخت داده شده است.

جدول 1 ترکیبات سوخت بنزینی

<table>
<thead>
<tr>
<th>نام ترکیب</th>
<th>کریک (G)</th>
<th>هیدروکس اتان (O)</th>
<th>سهم جرمی (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کریک</td>
<td>10/1</td>
<td>90/1</td>
<td>117/125</td>
</tr>
<tr>
<td>هیدروکس اتان</td>
<td>45/1</td>
<td>55/1</td>
<td>55/1</td>
</tr>
</tbody>
</table>

جدول 2 ترکیبات سوخت کار ترکیباتی

<table>
<thead>
<tr>
<th>نام ترکیب</th>
<th>درصد جرمی</th>
</tr>
</thead>
<tbody>
<tr>
<td>هیدروکس اتان</td>
<td>10/1</td>
</tr>
<tr>
<td>کریک</td>
<td>90/1</td>
</tr>
<tr>
<td>آتان</td>
<td>117/125</td>
</tr>
</tbody>
</table>

4-2 منحنی‌ها فشار استانه‌ها در حالت‌های بنزین سوخت

گازوس و دوگانج سوز

شکل‌های (1) و (2) منحنی‌های فشار استانه‌ها را برای موتور در حالت‌های بنزین سوخت، گازوس و دوگانج سوز با سه سوخت جامگ در دو درجه حرارت 780، 700 و 680 rpm قدرت 1000 و 1/4 در و 1/2 در دو حالت تجربی و شیب سرای متغیرها نشان داده است.
شیب‌سازی نرمالیتیک مصرف کننده موتور از دو جهت مخاطب است. در این مقاله بر اساس مرجع [۲۶] از مقایسه متقابلی‌های تجاری و شبیه‌سازی فشار در فرآیند اختراق از دیگر مفاهیم مکانیک بیشتر فشار استوانه در دو حالت تجاری و شبیه‌سازی تعیین می‌شود. مقادیر نرمی در شکل ۵ تا ۱۰ در حالت‌های مختلف سوخت دو کاله نزدیک به ترتیب ۱/۶۸/۱۵/۰/۵۰/۰/۲۰۷۰ می‌باشد. بر اساس شکل ۶ (۱) تا (۳) متقابلی‌های پیش‌بینی شده برای تغییرات فشار استوانه بر حسب زاویه لنگ با نتایج تجاری بین‌های مخاطب دارند. که این امر دلیل بر مصحت الگو برای پیش‌بینی تغییرات فشار استوانه در دو حالات سوخت بنزینی و گاز سوز می‌باشد. بیشتر از این، شبیه‌سازی یک جرم گرفته‌رای سرعت شعله، انتخاب نظریه
نمایش نشان مخلوط سوخت ورودی را نشان می‌دهد. لذا در هر دور بیشتر قدرت موتور ممیزبیت به حالت بتنی سو و کمترین آن متعلق به حالت گازرژ، می‌باشد.

میانگین بیشتری شده را این کاهش (19%) و در حالت تجربی (14%) در تمام دورها می‌باشد. این نتایج با نوارهای شامی و همکارش (20) و اسلام (21) همکاری داشته‌اند. در حالت گازرژ و بیشتر سوز ارائه کرده‌اند بهبود بهبودی محسوسی دارد.

![عکس](https://example.com/figure.png)

شکل 7

برای اینکه سوختینی و هر ابتدا و صرف وزنه و چهار نوع مخصوص اکتیو، یک انرژی می‌باشد.

![عکس](https://example.com/figure2.png)

شکل 8

برای اینکه سوختینی و هر ابتدا و صرف وزنه و چهار نوع مخصوص اکتیو، یک انرژی می‌باشد.

![عکس](https://example.com/figure3.png)

شکل 9

برای اینکه سوختینی و هر ابتدا و صرف وزنه و چهار نوع مخصوص اکتیو، یک انرژی می‌باشد.

1. Aslam
بحث تجربی و شبیه‌سازی برای ال‌آئن (CO) در نظر گرفتن مقدار کاهش در نسبت رشد و کار دوزه‌گونه‌ای (وکنش‌های (۶) تا (۱۲)) برای پیش‌بینی و اکتشافی داخل مونتر می‌باشد که شامل مقدار محدود و اکتشافی ریمیا (رادیوکالی) است. این امر به‌طور مداوم برای مقدار CO پیش‌بینی شده با مقادیر تجربی در بعضی حالت‌ها تا ۰.۲۸ اختلاف داشته باشد.

مطالعه شکل‌های (۸) و (۹) در هر دور، مصرف ویژه سوخت در حالت گاز‌کوری کمتر از حالت نیزین سوز می‌باشد بطوری که نشان‌دهنده این کاهش در دوره‌های نتایج داده شده با صورت‌های زیردریایی ۱۰ پیش‌بینی شده است. چون که ارزش‌های کاهش طبیعی نسبت به نیزین پیش‌بینی شده است، مصرف ویژه سوخت در حالت گاز‌کوری کمتر از نیزین سوز قدرت می‌آید. پیش‌بینی مصرف ویژه سوخت در حالت نیزین نسبت به گاز‌کوری براساس مراجع (۷۷) و (۱۸) نیز مورد تأیید می‌باشد.

در شکل‌های (۱۰) و (۱۱) نتایج بدست آمده برای ال‌آئن (NO) و UHC برای NO و UHC در حالت نیزین سوز، گاز‌کوری و گاز‌کوری مایع که در محقق مرجع (۱۰) و (۱۱) افزایش سهم گاز طبیعی فشرده در مخلوط سوخت و در دوشه نیزین سوز این دو ال‌آئن در حالت گاز‌کوری کمتر و در حالت نیزین سوز بیشترین مقدار رادارند. از یک سو براساس جدول (۲) ترکیب گاز طبیعی مثل است و ترکیب نسبت به نیزین بازه بزگتری می‌گیرد و این امر باید کاهش چشمگیر موادکش در حالت گاز‌کوری نسبت به نیزین سوز می‌باشد. در مطالعه (۱۰) و (۱۱) در دوره ۲۰۰۰ rpm تا ۱۶۱۸ rpm بطریب (۸۷/۹۰) و (۱۸/۱۲) و برای NO میزان تا ۲/۸٪ و ۱۵/۱۸٪ در دوره ۲۰۰۰ rpm و ۱۶۱۸ rpm بطریب (۸۷/۹۰) و (۱۸/۱۲) و برای NO میزان تا ۲/۸٪ و ۱۵/۱۸٪
سیاستگری
نویسندهان از تکنیکی برای انتخاب گزینه‌های لزجی و یکی از هم‌کاران آزمایشات تجربی چنین داده‌های امکان‌پذیری متغیرها اعمال می‌توان سیاستگری می‌نماید.

علاقه و تنش‌های

نام‌ها

A

غلبت‌های مناسب
B

 قطر شتاب
C

 ضریب بسیار
D

 لغزش
E

 فلسفه
F

 میزان
G

 گستردگی
H

 اینترکا
I

 اینترکاکت
J

 میزان
K

 اینترکاکت
L

 اینترکاکت
M

 اینترکاکت
N

 اینترکاکت
O

 اینترکاکت
P

 اینترکاکت
Q

 اینترکاکت
R

 اینترکاکت
S

 اینترکاکت
T

 اینترکاکت
U

 اینترکاکت
V

 اینترکاکت
W

 اینترکاکت
X

 اینترکاکت
Y

 اینترکاکت
Z

 اینترکاکت

References:

Thermodynamic Simulation of Spark Ignition Internal Combustion Engine Operation with Blends of Gasoline and CNG with Experimental Verification

Mehrnoosh Dashti*
Islamic Azad University- Science and Research Branch
mehnoosh.dashti@yahoo.com

Ali Asghar Hamidi
University of Tehran
aahamidi@ut.ac.ir

Ali Asghar Mozafari
Sharif University of Technology
mozafari@sharif.edu

Abstract
Regarding environmental pollution of internal combustion engines and depletion of fossil fuels resources, compressed natural gas has been considered as an alternative to gasoline in vehicle applications. As supplementary fuel for spark-ignition engines, CNG has some advantages over gasoline, such as higher octane number and reduction of CO2, CO and UHC emissions. In this paper, a quasi-dimensional thermodynamic predictive model used to simulate the working cycle of a 4-stroke spark ignition engine fueled with gasoline, CNG, and their mixture for variable mass CNG fraction. The model predicts the performance parameters such as power, ISFC and environmental emissions including CO2, CO, UHC and NO. The results obtained from the present study have been compared with the experimental data. The experiments have been done on a bi-fuel CNG-gasoline engine for gasoline, CNG and the dual fuel operations. The results for pressure traces and performance parameters of the engine showed a good agreement with corresponding experimental data.

Keywords: CNG, dual fuelled, simulation, thermodynamic, gas fuelled.