بهینه‌سازی چندراهه ورودی موتور 3
با هدف افزایش بندی تنفسی

ابوالفضل محمدی‌ارشی
نامه‌وران کارشناسی ارشد، دانشگاه مهندسی خودرو
یادگیری مکانیک، شرکت تحقیق و توسعه موتور ایران خودرو (IPCO)
m. ebrahim@ip-co.com

امیرحسین کاکایی
استاد دانشگاه مهندسی خودرو
شیراز، دانشگاه ایران
kakaec_ah@iust.ac.ir

جکیده

طراحی چندراهه ورودی بیشرت به صورت تجربی بوده است، ولی در سال‌های اخیر و با افزایش توان رایانه‌ها و گسترش نرم‌افزارهای محاسباتی، طراحی چندراهه‌های به‌صورت علمی ترتیب داده‌شده و به‌طور مشابه از مدل‌های پیشنهادی توسط نسبت به معادلات خاصی استفاده می‌شود.

در این مقاله از دو نمونه موتور ایجاد شده توسط GT-Power استفاده و از این نمونه‌ها شروع می‌شود. در این نمونه‌ها: یک نمونه از هدفمندی‌ها و هدفمندی‌های بهینه‌سازی یک تابع هدف به عنوان معیار بهینه‌سازی تعیین می‌گردد. با استفاده از این تابع، بایستی که هدف منحنی‌های متغیر مورد مطالعه را به‌صورت کمی با یکدیگر مقایسه کرد. در ادامه با توجه به گزینه‌های موجود، چنین متغیر برای عملیات بهینه‌سازی انتخاب می‌گردد. متغیرهای انتخاب شده از لحاظ طول، قطر و انحنای بررسی و مناسب‌ترین حالت با توجه به محدودیت‌های مختلف تعیین می‌گردد.

روش حل مسائل استفاده از موج‌های صوتی با تکه‌بندی بهینه‌سازی مدل‌های نوین دانشگاهی، نوسان می‌کند و بازده تنفسی بهینه‌سازی ورودی GT-Power

کلید واژه‌ها: تابدل گاز، بازده تنفسی، بهینه‌سازی چندراهه ورودی

1- مقدمه

چندراهه ورودی در این در مطالعه توسعه پیوسته دارد. با عملکرد مطلوب چندراهه ورودی، توربیکت بافت‌های مخاطب پیش‌بینی شده است. این ایجاد می‌کند که باشد با تا مخاطب پیش‌بینی بماند که اعمال مایز و پایدار باید به استوانه‌ها ارسال شود و پایدار تابدل‌های چندراهه.”

اصطلاحات علمی تکثیر: موتور/آسان شلیک ایرانی، پیش‌بینی ۲۸۸۹

2- شیب‌سازی و تحلیل جریان سیال در محیط گردشگری ورودی

در این بخش، برای تحلیل جریان در محیط گردشگری ورودی، جریان سیال با استفاده از روش تفاضل محدود، شیب‌سازی می‌شود. برای به‌دست آوردن راه حل یکپارچه و دقیق، باید ترکیبی از راه‌های دیگر ورودی و استفاده مواد مورد نیاز باشد.

شکل 1. سیستم ورودی ساده شده را نشان می‌دهد. گردشگری ورودی شامل چهار لوله برای اتصال به هر استوانه، یک محیط آرامش و یک لوله مستقیم بیند برای اتصال به هوا دارد. هوا به ورودی، گاز کامل فرض شده و جریان در لوله، یک‌بندی و تراکم‌پذیری ورودی می‌شود.

همچنین افتدوم و فشار ناشی از اصطکاک و انقلاب حرارتی از دیوره وجود دارد.

در سال 1974، اکلیپسیالی برای تطیف گردشگری معرفی شد که این معادلات به‌طور طراحی بسیار قرار گرفته است.

diagram 3

و در سال 1990، پیمونت و پیرسون از روش گردشگری ورودی و مواد اکسیدال استوانه‌ای برای محاسبه شیب‌سازی UNISIM و Wave معرفی کردند.

در سال 1995، بیشتر از شرکت فلوکس واکل جریان را در گردشگری ورودی موثر جهت استوانه‌ای بهره‌مندی کردند. برای این کار از روش امام خدایی و یکدلاین Vectis و Wave بهره‌مندی کردند.

ناتوان این جنبه با این امر، موثریت گردشگری ورودی موثر ندارد.

که در آن، صورت کسر، هوا و یا موادی که به موثر در حال واقع و مخرج کسر، حجم هوا/ایست. چنانکه می‌توانند به صورت نظری محیط موثر را پیدا کنند.

در سال 1994 مقاله‌ای تحت عنوان "اثر طول شاخه‌های مکش بر زیره" تاریکی را منشی نمود - گردشگری در زمینه طراحی گردشگری ورودی انجم داده‌اند با این حال مطالعات و کارهای اساسی پس از سال 1940 صورت گرفته است.

\[\eta_i = \frac{G_i}{V_{di} \rho m_i} = \frac{V_{di}}{V_{di}} \] \hspace{1cm} (1)

\[\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = -\rho \frac{dU}{dx} \] \hspace{1cm} (2)

\[\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} = -\rho \left(\frac{dU}{d} + \frac{dF}{dx} \right) + \frac{1}{2} \rho \left(C_T + \frac{u^2}{2} \right) \] \hspace{1cm} (3)

\[\frac{\partial (C_T + \frac{u^2}{2})}{\partial t} + \frac{\partial (C_T + \frac{u^2}{2} \rho F u d x)}{\partial x} = q_p F d x \] \hspace{1cm} (4)

برای به‌دست آوردن جریان بهره‌مند ویژه، روش تفاضل محدود و جریان یک‌بندی و تراکم‌پذیری کمک می‌کند. در این روش به‌کارگیری گام زمانی به دو گام میانی در حوزه زمان تبدیل می‌شود. در گام اول برای یافتن مقادیر در n+1/2 1/2 2/2 i-1,i,i+1 + از روش لکس استفاده می‌شود. در ادامه مقدار 1/2 را در حوزه زمان n استفاده می‌شود. در ادامه مقدار 1/2 را در حوزه زمان n منابعی پژوهشی تحقیقات موثر اصل شریفت انتشار به زبان تغییر 1389
یورودی یا بعد از باز شدن دریچه ورودی اتفاق می‌افتد. به دلیل اینکه حجم استوانه به‌شدت یک‌تایی از حجم راهگاه ورودی است، می‌توان استوانه را یک منبع در نظر گرفت و جریان را از این ناحیه هم‌انرژی برآورد کرد. [10]

\[a_i^2 = a_i^2 + \frac{\kappa - 1}{2} u_i^2 \]

(11)

\[\frac{p_i}{\rho_i^c} = \frac{p_i}{\rho_i^c} \]

(12)

در محفظه نشان داده شده در شکل ۳ خواهیم داشت:

\[\frac{\partial p}{\partial t} = \frac{1}{V} \sum \left(\rho_i u_i \right) \]

(13)

\[\rho_i^{n+1} = \rho_i^n + \frac{\partial p}{\partial t} \Delta t \]

(14)

همچنین اگر جریان شیب‌های بین نقاط ۱ و ۲ هم‌انرژی فرض شود:

\[\frac{p_i}{\rho_i^c} = \frac{p_i}{\rho_i^c} \]

(15)

به دست می‌آید:

\[\left(\frac{\partial (\rho u_i)}{\partial t} \right)^{n+1} - \left(\frac{\partial (\rho u_i)}{\partial t} \right)^{(n)} - \left(\frac{\partial (\rho u_i)}{\partial t} \right)^{1+1} = 0 \]

(16)

از آن معادلات مقداری \(p, \rho, u \) در نقطه ۱ به دست می‌آید.

با حل شش معادله با (از ۱۰) مقدار \(p, \rho, u \) در نقاط ۱ و گلوگاه به‌دست می‌آید.

3- بررسی الگوی یکبعید

با در نظر گرفتن تمامی اجزای سامانه تدل‌گاز و استخراج متغیرهای هر جزء با سامانه الگوی یکبعیدی از موتور تحت‌هیچ شدت (شکل ۳) می‌آید.
در ادامه با بررسی متغیرهای مختلف، تنظیم کننده موتور یا برای تطبیق نتایج الگو با نتایج آزمون انجام گردید. پس از مراحل تطبیق، الگو با خطای کمی متغیرهای خروجی موتور مانند کشش و توان را یادداشت می‌کند. نتایج دو شکل ۵ و ۶ نشان می‌دهند.

جدول ۱: درصد خطا در پیش‌بینی (درصد %) خطا در پیش‌بینی (درصد %) توان (کشش) (درود) دور (rpm)

<table>
<thead>
<tr>
<th>دور (rpm)</th>
<th>توان (کشش)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳/۹</td>
<td>۱/۷</td>
</tr>
<tr>
<td>۷/۸</td>
<td>۳/۶</td>
</tr>
<tr>
<td>۶/۴</td>
<td>۲/۳</td>
</tr>
<tr>
<td>۷/۳</td>
<td>۲/۵</td>
</tr>
<tr>
<td>۸/۷</td>
<td>۱</td>
</tr>
<tr>
<td>۹/۸</td>
<td>۱</td>
</tr>
<tr>
<td>۹/۹</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۱/۱</td>
<td>۲/۳</td>
</tr>
<tr>
<td>۱/۲</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۱/۲</td>
<td>۱/۱</td>
</tr>
</tbody>
</table>

در این مرحله با توجه به الگو موجود انطباقی باند و صحه گذرانی شده از سیستم تبادل گاز خودرو سمند، بهبودی سیستم رق دندانه گاز ورودی انجام می‌شود.

در این بخش، ابتدا یک تابع به عنوان معیار بهبودی سازی در نظر گرفته می‌شود. با تغییر متغیر مورد نظر برای بهبودی سازی در دامنه‌ای از تغییرات، با استفاده از روش مقدار میانگین و با تغییراتی در حدود ۲۰٪، مقدار بهبودی آن متغیر بدست می‌آید.
۴-۱-متنی‌های انتخابی برای پیشنهادی چندراهه ورودی

متنی‌های بالقوه در پیشنهادی چندراهه ورودی عبارتند از:
- طول و قطر لوله‌ها و ابعاد نوار‌های
- مجع‌مختصی آرامش (شامل طول و طول)
- محوطه‌مختصی آرامش
- اینجا
- صافی سطح

با توجه به انتخاب‌های زیاد برای محل و نحوه اتصال مجراها که به محصولات طراحی نیز بررسی گردد، ترجیح داده شد که این متن‌های تابت نه داشته شود.

در ضمن طول و قطر لوله تابه (لوله مختص به محفظه آرامش) در XU نظیر از اجزای چندراهه به شمار نمی‌رود، بلکه توسط لوله‌ای از ساخته شده‌های متصل می‌شود. بنابراین در انتخاب ریوی تغییرات آن مطالعه‌ای انجام نشده است.

در مورد انتخاب‌های لوله‌ای (مجرای) نیز بای خود بوجود دامنه وسیع تغییرات و محصولات جایگاهی‌تر می‌شود و محفظه نجیب‌خوردن.

چهار حالت مختلف بررسی شده است.

۴-۲- تعیین معیار بهینه‌سازی

معیار بهینه‌سازی با متن‌های مختلف بستگی دارد مانند:
- نوع موتور (داری با نیزی)
- محوطه‌مختصی آرامش (یرز ۱۰۰ سی، ۱۶۰۰، ۲۰۰۰ و بالای ۲۵۰ سی)
- نوع خودرو (ششهری، مسابقه‌ای و ...)

هر جا و فردی (فراوانی) (تیپ، اوریا و ...) در این تحقیق با توجه به وضعیت کارکرد خودرو در کاربردهای شری و وزیگی‌های متصل، هدف اصلی به‌حدود پس‌در بند محدوده‌های ۲۵۰۰ تا ۴۰۰۰ قرار دارد. با توجه به فراوانی نیاز کارکرد موتور در دوره‌های مختلف، ضرایب وزنی برای تأیید اهمیت هر دور به‌صورت زیر در نظر گرفته‌شد:
- ضریب اهمیت ۰/۱۵ برای دور ۲۵۰۰
- ضریب اهمیت ۰/۳ برای دور ۳۰۰۰
- ضریب اهمیت ۰/۵ برای دور ۴۰۰۰
- تناوب معیار بهینه‌سازی برای صورت خواهد بود:

\[
C = 0.5 \times \text{Volef2500} + 0.3 \times \text{Volef3000} + 0.2 \times \text{Volef3500} \ (\text{Y})
\]

\[\text{(شكل ۷)}\]
پیشینه‌سازی بهره‌مندی رودی موتور محور اصلی - پژوهشی تحقیقاتی و مهندسی شیمی انجام‌شده در سال 1389

جدول ۳ پیشینه‌سازی قطع مجرای در ۶۰۰۰ دور بر دقیقه

<table>
<thead>
<tr>
<th>مرحله پیشینه‌سازی</th>
<th>قطر مجرا</th>
<th>میلی‌متر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۷/۷۵</td>
<td>۳۳/۷۵</td>
</tr>
<tr>
<td>۲</td>
<td>۷/۸۸</td>
<td>۳۳/۸۸</td>
</tr>
<tr>
<td>۳</td>
<td>۷/۹۱</td>
<td>۳۳/۹۱</td>
</tr>
<tr>
<td>۴</td>
<td>۷/۹۴</td>
<td>۳۳/۹۴</td>
</tr>
<tr>
<td>۵</td>
<td>۷/۹۵</td>
<td>۳۳/۹۵</td>
</tr>
<tr>
<td>۶</td>
<td>۸/۸۸</td>
<td>۳۴/۸۸</td>
</tr>
<tr>
<td>۷</td>
<td>۸/۹۱</td>
<td>۳۴/۹۱</td>
</tr>
<tr>
<td>۸</td>
<td>۸/۹۴</td>
<td>۳۴/۹۴</td>
</tr>
<tr>
<td>۹</td>
<td>۸/۹۵</td>
<td>۳۴/۹۵</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰/۷۵</td>
<td>۴۰/۷۵</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۰/۸۸</td>
<td>۴۰/۸۸</td>
</tr>
</tbody>
</table>

نهایتاً با بررسی در دوره‌های مختلف، شکل ۱۰ به دست آمد. در این شکل تغییرات میزان پیشینه‌سازی با توجه به تغییرات قطع مشخص شده است.

جلوای ۳ رونده تغییر قطع مجرای در ۶۰۰۰ دور بر دقیقه

۴-۵- تأثیر قطر لوله‌های اولیه بر باره‌گردتنی

هدف اصلی در این قسمت، تعیین قطر پیشینه لوله‌های اولیه در هر دور است. به عنوان مثال با روند مشخص شده در جدول ۴، در ۳۰۰۰ دور بر دقیقه نرمال باره، قطر پیشینه ۲/۲۵ میلی‌متر به‌دست آمد.

جدول ۴ مراحل پیشینه‌سازی قطع مجرا در ۶۰۰۰ دور بر دقیقه

<table>
<thead>
<tr>
<th>گام پیشینه‌سازی</th>
<th>قطر مجرا</th>
<th>میلی‌متر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲/۸۴۳</td>
<td>۱۰/۸۴۳</td>
</tr>
<tr>
<td>۲</td>
<td>۲/۸۴۲</td>
<td>۱۰/۸۴۲</td>
</tr>
<tr>
<td>۳</td>
<td>۲/۸۴۱</td>
<td>۱۰/۸۴۱</td>
</tr>
<tr>
<td>۴</td>
<td>۲/۸۴۰</td>
<td>۱۰/۸۴۰</td>
</tr>
<tr>
<td>۵</td>
<td>۲/۸۳۹</td>
<td>۱۰/۸۳۹</td>
</tr>
<tr>
<td>۶</td>
<td>۲/۸۳۶</td>
<td>۱۰/۸۳۶</td>
</tr>
<tr>
<td>۷</td>
<td>۲/۸۳۴</td>
<td>۱۰/۸۳۴</td>
</tr>
<tr>
<td>۸</td>
<td>۲/۸۳۲</td>
<td>۱۰/۸۳۲</td>
</tr>
<tr>
<td>۹</td>
<td>۲/۸۳۰</td>
<td>۱۰/۸۳۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۲/۸۲۸</td>
<td>۱۰/۸۲۸</td>
</tr>
<tr>
<td>۱۱</td>
<td>۲/۸۲۴</td>
<td>۱۰/۸۲۴</td>
</tr>
</tbody>
</table>

پایان‌گزاری با شکل ۱۰ اعداد پیشینه قطع مجرا در دوره‌های هدف به‌صورت جدول ۴ خواهد بود.
برای رسیدن به طول بهینه در 6000 دور بر دقیقه، مدل مerais 7 انجام شده است.

جدول ۶ مراحل بهینه‌سازی طول محرک در 6000 دور بر دقیقه

<table>
<thead>
<tr>
<th>مرحله بهینه‌سازی</th>
<th>قطر محرک</th>
<th>میزان بهینه‌سازی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>65/6000</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>63/6000</td>
<td>۲</td>
</tr>
<tr>
<td>۳</td>
<td>61/6000</td>
<td>۳</td>
</tr>
<tr>
<td>۴</td>
<td>59/6000</td>
<td>۴</td>
</tr>
<tr>
<td>۵</td>
<td>57/6000</td>
<td>۵</td>
</tr>
<tr>
<td>۶</td>
<td>55/6000</td>
<td>۶</td>
</tr>
<tr>
<td>۷</td>
<td>53/6000</td>
<td>۷</td>
</tr>
<tr>
<td>۸</td>
<td>51/6000</td>
<td>۸</td>
</tr>
<tr>
<td>۹</td>
<td>49/6000</td>
<td>۹</td>
</tr>
<tr>
<td>۱۰</td>
<td>47/6000</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۱</td>
<td>45/6000</td>
<td>۱۱</td>
</tr>
</tbody>
</table>

با بررسی نمودار بیشتر در مورد دور بهینه هدف (rpm=140000, 250000, 450000, 550000), اثر طول بهینه‌سازی در شکل‌های ۱۱ تا ۱۳ مشخص شده است.

جدول ۷ دور محرک (دور بر دقیقه)

<table>
<thead>
<tr>
<th>قطر بهینه (mm)</th>
<th>دور محرک (دور بر دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵</td>
<td>۲۵۰۰۰</td>
</tr>
<tr>
<td>۵۵</td>
<td>۳۵۰۰۰</td>
</tr>
<tr>
<td>۷۵</td>
<td>۴۳۷۵۰</td>
</tr>
</tbody>
</table>

در جدول ۶ قطر بهینه برای دور بهینه هدف ۲۵ دور بر دقیقه ذکر شده است. برای اطلاعات دقیق‌تر نهایی قطر بهینه، باعث سازی بهینه‌سازی (C) باید مورد بررسی قرار گیرد.

جدول ۸ بازه تنشی در قطر بهینه در دور بهینه هدف

<table>
<thead>
<tr>
<th>دور محرک (دور بر دقیقه)</th>
<th>دور محرک (دور بر دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵۰۰۰</td>
<td>۲۵۰۰۰</td>
</tr>
<tr>
<td>۳۵۰۰۰</td>
<td>۳۵۰۰۰</td>
</tr>
<tr>
<td>۴۳۷۵۰</td>
<td>۴۳۷۵۰</td>
</tr>
<tr>
<td>۵۵۰۰۰</td>
<td>۵۵۰۰۰</td>
</tr>
</tbody>
</table>

با توجه به جدول ۵ و میزان دور بهینه‌سازی (rpm=25/45/55 میلی متر هدف بهینه)، قطر بهینه محرک برای این جنگله‌های است.

۴-۶- تأثیر طول لوله‌های اولیه بر بازده تنفسی

هم اصلی در این قسمت تغییر طول بهینه لوله‌های اولیه در هر دور است. بر اساس مطالعه روند مشخص شده در جدول ۶ در دور ۳۰۰۰ دور بر دقیقه، طول بهینه ۲۵ میلی متر به حساب آمده.

جدول ۹ مراحل بهینه‌سازی طول محرک در ۳۰۰۰ دور بر دقیقه

<table>
<thead>
<tr>
<th>مرحله بهینه‌سازی</th>
<th>قطر محرک</th>
<th>میزان بهینه‌سازی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>85/6000</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>85/6000</td>
<td>۲</td>
</tr>
<tr>
<td>۳</td>
<td>85/6000</td>
<td>۳</td>
</tr>
<tr>
<td>۴</td>
<td>85/6000</td>
<td>۴</td>
</tr>
<tr>
<td>۵</td>
<td>85/6000</td>
<td>۵</td>
</tr>
<tr>
<td>۶</td>
<td>85/6000</td>
<td>۶</td>
</tr>
<tr>
<td>۷</td>
<td>85/6000</td>
<td>۷</td>
</tr>
<tr>
<td>۸</td>
<td>85/6000</td>
<td>۸</td>
</tr>
<tr>
<td>۹</td>
<td>85/6000</td>
<td>۹</td>
</tr>
<tr>
<td>۱۰</td>
<td>85/6000</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۱</td>
<td>85/6000</td>
<td>۱۱</td>
</tr>
</tbody>
</table>

شکل ۱۱ تأثیر طول محور بر بازده تنفسی در دور ۴۰۰۰

شکل ۱۲ تأثیر طول محور بر بازده تنفسی در دور ۲۵۰۰
5- نتیجه گیری

با پهپاده فازگیری انجام شده و انتخاب طول مجار، قطر مجار و زاویه تائید بهینه فازگیری شده و وضعیت پهپاده تنفسی موتور در دوره‌های هدف به‌صورت شکل 12 خواهد بود.

قابل ذکر است که حالت پایه اشاره شده در شکل 14 خروجی حاصل از الگوی صحبت‌گذاری شده با هندسه اولیه چند‌راهه ورودی است. و منحنی دور در ان شکل بعد از تغییرات روی هندسه الگو به‌دست آمده است. جزئیات اعداد و مقدار تغییر بهینه‌سازی به‌صورت جدول 10 است.

جدول 10 وضعیت بهینه‌سازی‌های انجام شده

<table>
<thead>
<tr>
<th>پهپاده معیار بهبود پهپاده بهبود پهپاده در دوره‌های هدف (rpm)</th>
<th>پهپاده تنفسی نمونه اولیه بهینه‌سازی در دوره‌های هدف (rpm)</th>
<th>نمونه اولیه بهینه‌سازی در دوره‌های هدف (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/41</td>
<td>2/32</td>
<td>2/50</td>
</tr>
<tr>
<td>2/65</td>
<td>2/74</td>
<td>2/50</td>
</tr>
<tr>
<td>0/87</td>
<td>0/89</td>
<td>2/00</td>
</tr>
</tbody>
</table>

با توجه به شکل‌های 11 تا 13، قطرهای بهینه در سرعت‌های هدف در جدول 8 نشان داده شده است.

جدول 8 اعداد بهینه طول مجار (mm) در دوره‌های هدف

<table>
<thead>
<tr>
<th>دور موتور (rpm)</th>
<th>طول بهینه (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>125/5</td>
</tr>
<tr>
<td>2500</td>
<td>135</td>
</tr>
<tr>
<td>2500</td>
<td>35</td>
</tr>
</tbody>
</table>

پرایی دوره‌های هدف، با توجه به طول بهینه‌های دور، شرایط به‌صورت جدول 9 خواهد بود.

جدول 9 پهپاده تنفسی در طول‌های مختلف مجار (mm) در دوره‌های هدف

<table>
<thead>
<tr>
<th>دور موتور (rpm)</th>
<th>میزان بهینه‌سازی</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>0/34</td>
</tr>
<tr>
<td>2500</td>
<td>28/7</td>
</tr>
<tr>
<td>0/34</td>
<td>28/7</td>
</tr>
<tr>
<td>0/34</td>
<td>28/7</td>
</tr>
<tr>
<td>0/34</td>
<td>28/7</td>
</tr>
<tr>
<td>0/34</td>
<td>28/7</td>
</tr>
</tbody>
</table>

با توجه به جدول 9 و میزان بهینه‌سازی، طول مجار برای این چند‌راهه است.
References:

Intake Manifold Optimization of XU7 Engine to Improve Volumetric Efficiency

A.M. Ebrahim
MS student
School of Automotive Engineering
Iran University of Science & Technology
Iran Khodro Powertrain Co. (IPCO)
m_ebrahim@ip-co.com

A.H. Kakaei*
Assistant Professor
School of Automotive Engineering
Iran University of Science & Technology
kakaee_ah@iust.ac.ir

Abstract

The objective of this work was to develop a new design of an intake manifold through a 1D simulation. It is quite familiar that a duly designed intake manifold is essential for the optimal performance of an internal combustion engine. Air flow inside the intake manifold is one of the important factors, which governs the engine performance and emissions. Hence the flow phenomenon inside the intake manifold should be fully optimized to produce more engine power with better combustion and further reduces the emission.

In this paper, during the new engine development the pressure waves for the intake manifold is simulated using 1D GT-POWER software, to study the internal air flow characteristic for the 4-cylinder gasoline engine during transient conditions. Based on the 1D simulation results, the intake manifold design is optimized. As a result of this analysis, intake manifold with 2.5% improvement in volumetric efficiency is achieved.

Keywords: Gas Exchange, Volumetric Efficiency, Intake Manifold, Optimization, GT-Power