بررسی اثر متغیرهای مهم در تشخیص کوبش با استفاده از علائم فشار درون استوانته در موتور بنزینی

امیر حسن کاشانی
استاد رانک دانشگاه علوم پزشکی تهران
kakaei_ah@iust.ac.ir

محمود مونمنی موحد
کارشناسی ارشد، مهندسی کنترل - دانشگاه علوم پزشکی تهران
m_momeni@ip-co.com

علي اصغر محمودی
کارشناسی ارشد مهندسی کنترل - دانشگاه علوم پزشکی تهران
ahmad的味道@ip-co.com

محمود غفوری
کارشناسی ارشد مهندسی کنترل - دانشگاه علوم پزشکی تهران
m_ghafari@ip-co.com

چکیده
متغیرهای زیادی در اندازه‌گیری و تحلیل علائم (سیگنال) فشار درون استوانته برای تشخیص صحیح کوبش تأثیر گذار می‌باشند. متغیرهای

اتدازه‌گیری شامل سسموم محور، تعداد گذشتگی محور نیز برای تشخیص صحیح کوبش، محل نصب حسگر و طریقه نصب آن است.

متغیرهای تحلیل داده‌ها شامل داده‌های فیزیکی (فلتراسیون)، شدت حرارت و نیز حرارت نقطه شروع و روش استفاده آن است. برای تأثیر متغیرهای در تشخیص کوبش به همراه نحوه انتخاب بهینه آنها با استفاده از تحلیل رابطه آزمون‌های انجام شده برای محاسبه شد که بر خلاف پیشین است. تأثیر این گونه درصدی است که بر خلاف پیشین بررسی مقدار

یا روش‌های بهینه است. به‌طور کلی شرایط پیش‌گیری نسبی از موتور نیروی است قابلیت ثابت کردن آنها در بی‌میزان

تبدیل فیزیکی و تصدیقی رقومی از روش‌های مهم پیش‌گیری اطلاعات حسگرها می‌باشد. نحوه محاسبه و کاربرد آنها بررسی

شده است. تبدیل فیزیکی سبب اصلی این بررسی نسبت به لازم رسیدن و محاسبه رقومی نوسانات ایجاد شده را با پیامدهای غیر

داته‌های حرفه‌ای نیاز می‌باشد.

با بررسی نتایج آزمون‌ها مشاهده می‌شود که کوبش در سراسر همه خاص به عنوان حادثه‌های ارتعاشاتی صوتی در محیط ریخت

می‌دهد که روش‌هایی برای پیش‌بینی و محاسبه آن برای است. نتایج: بررسی اصلی نوسانات ایجاد شده در اثر کوبش در

این موتور حدود 8 کیلوهertz می‌باشد. به طور کلی تغییر دقت این بیان‌ها برای بررسی اثر تصدیق و مناسب بهینه کارگری حسگر فشار

استوانته، کاربرد زیادی دارد.

کلیدواژه‌ها: تشخیص کوبش، فشار درون استوانته، تحلیل حساسیت، متغیرهای بهینه، موتور بنزینی

88/12/1 : 88/6/12 : د.م.د.های ارتعاشاتی صوتی در محیط ریخت می‌دهد که روش‌هایی برای پیش‌بینی و محاسبه آن برای است. نتایج: بررسی اصلی نوسانات ایجاد شده در اثر کوبش در

این موتور حدود 8 کیلوهertz می‌باشد. به طور کلی تغییر دقت این بیان‌ها برای بررسی اثر تصدیق و مناسب بهینه کارگری حسگر فشار

استوانته، کاربرد زیادی دارد.

کلیدواژه‌ها: تشخیص کوبش، فشار درون استوانته، تحلیل حساسیت، متغیرهای بهینه، موتور بنزینی

کویش یکی از متغیرها اساسی است که به روش آزمایشی، بازده حرارتی و عمر موتور بنزینی تأثیرگذار است. این کویش شامل می‌باشد:

1. نوافور موثر
2. حجم موثر
3. نسبت تراکم
4. قطر استوانه
5. طول سیر سیلندر
6. فشار پاش ایستاده

2- سخن‌پرداز

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

3- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

4- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

5- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

6- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

7- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

8- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

9- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

10- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

11- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

12- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

13- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

14- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.

15- سخت‌پوش

ج) موتور‌های بدون موتور
برای روندهای امواج غیرخطی و بی‌ارتباط، وارد شده است. این کویش در اکثر مواقع به‌طور بهترین استفاده می‌گردد.
6- رابطه‌های موجود و رایانه‌های ES 590 از زیر مجموعه ETAS را برای برقراری ارتباط بین رایانه و واحد پایین‌تر موجود (از آملزگانهای)، به کار برده می‌شود. با برقراری این ارتباط می‌توان فرمان داده‌ها را به تمامی عملکدها صادر نمود. همچنین از نرم‌افزارهایی برای اندوزه‌گیری و تحلیل اطلاعات فشار درون استانه استفاده شده است که کاربردهای هر یک از آنها در مرجع [2] آمده است:

AVL 670 Indimaster, Calcegraf,
AVL Concerto 3.7
INCA 5.4
Matlab 7.1

3- شرایط آزمون

به طور کلی می‌توان فکت که محدوده تغییرات شرایط عملکرد موتور برای آزمایش‌ها بدين شرح می‌باشد:

<table>
<thead>
<tr>
<th>مدیرجهت سرعت</th>
<th>یابازه‌پذیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>لاکتیه (نیست هوا به سوخت)</td>
<td>10-75 کیلوهروئز</td>
</tr>
<tr>
<td>فاقد تغییر پس از برداشت درست (استوکوزمتر(ان))</td>
<td>1-30 کیلوهروئز</td>
</tr>
<tr>
<td>عدد اکتان بنزین</td>
<td>75-100 دما هوا ورودی</td>
</tr>
<tr>
<td>زمان رقم‌زنی</td>
<td>0-200 دما آب نکاتکاری</td>
</tr>
<tr>
<td>از حال بند و فوکس کوپی کلرستگن</td>
<td>0-300 دما سانتیگراد</td>
</tr>
<tr>
<td>دمای محلی</td>
<td>0-500 دما سانتیگراد</td>
</tr>
<tr>
<td>دمای هوا ورودی</td>
<td>0-1000 دما سانتیگراد</td>
</tr>
<tr>
<td>دمای آب نکاتکاری</td>
<td>0-300 دما سانتیگراد</td>
</tr>
<tr>
<td>دمای محلی</td>
<td>0-300 دما سانتیگراد</td>
</tr>
<tr>
<td>دمای آب نکاتکاری</td>
<td>0-300 دما سانتیگراد</td>
</tr>
</tbody>
</table>

4- نکات مهم در پردازش اطلاعات حسگرها

در اینبخش به معرفی تبدیل فوریه، تبدیل سریع فوریه و تصفیه رقومی یادآوری می‌شود.

1- تبدیل فوریه

علاقه‌مندی پیوسته به مونوپودیت می‌تواند به مجموعه‌ای از عالی‌سمینوس تجربه شود. به طوری که دامنه و فاز اجرا تابعی از سیستم باشد. بنابراین تبدیل فوریه نسبتاً برای تحلیل اطلاعات ناتوان در حوزه سیستم‌های این تبدیل اطلاعات کاملاً بکار گیری می‌شود. کننده مهم در استفاده از نمودار به دست آمده از تبدیل فوریه این است که پیشترین سامانی از آنها که می‌تواند تحلیل شود (سیستم ناکوپست). نصف سامان نمونه‌برداری است

٣٦
5- تعیین شدت کویش
با توجه به نتایج آراسته شده در مرجع [۶] برای ارزیابی روش‌های تعیین شدت کویش با استفاده از مقایسه نتایج آزمون در شرایط تابث، از روش‌های برای تعیین شدت کویش استفاده شده است:
- حذف میانگین منحنی فشار
- مشتق سوم منحنی فشار

در ادامه این بخش به‌طور خلاصه، تعیین شدت کویش با استفاده از این دو روش بیان می‌شود.

1- حذف میانگین منحنی فشار
در این روش، منحنی تصویف شده به‌همراه برای فشار استوانه محاسبه می‌شود. منحنی اصلی فشار استوانه کم‌می‌شود. منحنی به دست آمده منحنی فشار کوش نامیده می‌شود. بخش مشترک منحنی با اصلاحاتی، به عنوان شدت کویش در هر صفحه محاسبه می‌شود.

کوشی (PKP) در شکل ۲ نشان داده شده است.

شکل ۲: نشان دادن شدت کویش با روش حذف میانگین منحنی فشار

4- تحقیق‌زمینه
تشخیص‌زمینه، قاعده‌های محاسباتی است که یک دبیل از اعداد ورودی را به خروجی تبدیل می‌کند. در این روش یک دبیل از بسامدهای گیریده‌ها صفر می‌شود. سپس مکوس تبدیل فوری محاسبه می‌شود و علامت تصویف شده به دست می‌آید.

صافی پایین گذر؛ بدون حذف همسان‌های کامپ از بسامد برش، حذف کامل همسان‌های بیشتر از بسامد برش، حذف صافی بالا گذر؛ بدون حذف همسان‌های بیشتر از بسامد برش، حذف کامل همسان‌های کمتر از بسامد برش

صافی بالا گذر؛ بدون حذف همسان‌های کامپ از بسامد برش

5- بررسی اثر تغییرات می‌موم در مشخصات کویش با استفاده از علامت‌های دیجیتال‌های نمودارشدگان در مولتی‌پر دی‌سی

بررسی اثر تغییرات می‌موم در مشخصات کویش با استفاده از علامت‌های دیجیتال‌های نمودارشدگان در مولتی‌پر دی‌سی و نمودارهای تصویفی شده آن و همچنین روش‌های محاسبه منحنی تصویفی شده در ترم افزارهای در مرجع [۶] آمده است.
هنگام وقوع خودشاتعیل به وجود می‌آید. حالتهای ارتعاشی می‌توانند محرک و شعاعی باشند و بسیاری از موثرهای اشتعال جریب ای در اندازه‌های خودروی سواری در حدود 5-10 کیلوهرتز هستند.

حالتهای ارتعاشی برای محیط‌های گرمکننده استناد می‌تواند به طور تحلیلی با استفاده از معادله (4) پیش بینی شود، در حالی که برای شکل‌های یپیده گردیده، واحد شناسایی نمود. برای اولین بار، در این مدل، بررسی شد که درکی مناسبی از فشار استناد برای تشخیص ارتعاش گرفته برای بررسی اثر تصفیه و مکان بهینه قرارگیری حسگر کاربرد زیادی دارد.

\[f_{m,n} = \frac{C \cdot \rho_{m,n}}{n^2} \] (3)

که در آن:

\(f_{m,n} \) : شماره خالص (مد) نوسانی محیطی
\(m \) : شماره خالص (مد) نوسانی شعاعی
\(n \) : بسمت ارتعاشی برای خالص (مد) \(f_{m,n} \) بر حسب هرتز
\(\rho_{m,n} \) : ضریب حالت (مد) ارتعاشی
\(C \) : سرعت صوت بر حسب متر بر ثانیه

در این‌ها، از ارتعاشات محوری صرفنظر شده است زیرا ارتفاع محیط‌های گرمکننده در فقط در مکت البالا به قطع خودکاست. شکل (4) بسیار از حالات تشخیص شعاعی و محیطی را نشان می‌دهد. همچنین در جدول (1) نیاز به ارتعاشات سه‌بخشی اول و دوم این آنها وجود دارد. سرعت صوت برای محاسبه بسیاری حالات ارتعاشی برای 10000 متر بر ثانیه شرایط وقوع کویری در نظر گرفته شده است (10). نیز نتایج متعددی، ضریب حالت ارتعاشی را تخمین زدهاند (11).}

در شکل (3) نمودار می‌تواند فشار استناد را در شرایط: سرعت دورانی 5000 دور بر دقیقه، بار دو تن و دمای ورودی 30 درجه سانتی‌گراد ترسیم شده است.

قابل ذکر است که در سرعت‌هایی دورانی کننده موثر، روش دوم مناسبتر است.

- حالت (مد)های ارتعاشی صوتی

با دست آوردن نمودار طیف قدرت از منحنی فشار استناد در تمامی شرایط کاری موتور در هنگام وقوع کویری، مشاهده می‌شود که همچنین دامنه‌های بیشتر در ساده‌هایا خاص رخ می‌دهد. این پیده با رسوم منحنی فشار استناد و نمودار طیف قدرت از آن در شرایط کاملاً متفاوت، در مرع (2) نشان داده شده است. در ادامه این بخش به بررسی عملکرد این سیستم مهم برخورد می‌شود.

کویری در ساده‌های خاص به علت حالت‌های ارتعاشی صوتی در محیط‌های ارتعاشی رخ می‌دهد. این موهای به سرعت تن آزاد شدن افزایش در

Checkele 2

Draper 2

1388
عنوان مثال حسک قرارگرفته در مرکز محافظت احترام، برای تمام حالات محیطی روشی که قرار می‌گیرد و تماپل دارد که به حالات ضعیف‌تر شناخت باخ دهد [12].

7- اثر متغیرهای اندازه‌گیری فشار درون استوانه در شدت کویش
در این بخش اثر متغیرهای اندازه‌گیری فشار درون استوانه در شدت کویش بررسی و نحوه انتخاب بهینه آن‌ها توضیح داده می‌شود. این متغیرها شامل سه سامانه‌برداری، تعادل حریفه‌های مورد نیاز برای تشخیص صحیح کویش، محل نصب حسک و طریقة نصب آن می‌باشد.

مومول تعداد ۲۰۰ تا ۳۰۰ جرخه برای محاسبه فشار مؤثر منتسب به نظر گرفته می‌شود. این تعداد جرخه برای محاسبه شدت کویش با توجه به تغییرات جرخه به جرخه خانه انتخاب گردیده است. برای پاسخ به این سوال به بررسی میزان تغییرات شدت کویش در جرخه نهایی برداشته می‌شود. شکل (۵) تغییرات فشار بین‌شینه کویش را بر حسب شماره جرخه در شرایط کویش متوسط‌تر نشان می‌دهد.

در شکل (۶) نمودار بسته به سایه در شرایط کویش متوسط، سرعت دورانی ۳۰۰۰ دور بر دقیقه و پرده در مسیر ۱۰۰ درصد می‌باشد. در شکل (۷) نمودار با کشش شماتیک کویش در سه زمان جرجه‌زنی مشاهده می‌شود. در این شرایطی که پیشینه کویش در زمان جرجه‌زنی وجود دارد، این سرعت جرخه‌های فشار بین‌شینه‌ای پیش از ۲۵ بار از ته دیده‌ای پس زمانه در نمودار فشار دارد و به عنوان جرخه همراه با کویش شناخته می‌شوند.

مقایسه بین سایه‌ها با شکل (۱)، اکبر حسین از مدل‌های را نشنال می‌باشد. برای به دست آوردن تابع دقیق تر، شبیه سازی رایانه‌ای با استفاده از روش اجزای محدود یا برنامه‌های CFD لازم است. درک این نکته ضروری است که پیشینه ذاتی‌ای فشار برای هر حالت هنگامی به دست می‌آید که حسک بین خطوط گره قرار گیرد. به

<table>
<thead>
<tr>
<th>Mode</th>
<th>Shape</th>
<th>(P_{m,n})</th>
<th>(f_{m,n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

M.E.P. - ۱
Cumulative Frequency - ۲
نمودار ۴ نمودار بسامد ایاسیتی برای فشار بیشتری کویش در سه زمان جریان زنی متفاوت.

۱۳۸۸ سرعت دوباره ۳۰ دوربین‌گیری و بزرگ‌تر تنفسی ۱۰۰ دوخت

این شکل‌ها تغییرات زمان جریان به چرخه شدت کویش را نشان می‌دهند. بنابراین برسی اثر تعداد چرخه را برای تشخیص صحیح کویش ضروری به نظر می‌رسد. قابل وابسته‌تر است که در سایر شرایط کاری موثر نزدیکت.

تغییرات زیاد جریان به چرخه شدت کویش به‌طور دیده می‌شود.

این تعداد چرخه‌ها در تغییر شدت کویش به وسیله نمونه‌برداری تا ۴۰۰۰۰ در سه وضعیت اطلاعات فشار استوانه و سپس محاسبه شدت کویش برای تمایل مختلف کوچک‌تر از این اطلاعات (۵۰ تا ۳۰۰۰۰) تعیین زده شد. در اینجا، برای هر مورد اندازه‌گیری مشابه با قابلیت یکسان اندازه‌گیری می‌شود. به عنوان مثال برای بررسی اثر ۱۰۰۰ جریان داریم:

\[
\text{Offset} = \frac{4000 - 1000}{500} = 6
\]

First: ۱ – ۱۰۰۰
Second: ۷ – ۱۰۰۶
Third: ۱۳ – ۱۰۱۲
.
.
500th: ۲۹۹۵ – ۳۹۹۴

نتایج در شکل (۷) نشان داده شده است.
در این بخش‌ها تاکید می‌گردد برای چهار حسگر به طور همزمان (7)

<table>
<thead>
<tr>
<th>فرکانس / کیلوهرتز</th>
<th>فشار مطلق</th>
<th>فشار بخاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\[\text{شکل 12 مقدار‌های مطلق که در هر سطح به طور همزمان (7)}\]

از میان سه‌گوشگر تحلیل داده‌ها نحوه تعیین شدند که در این بخش‌ها تاکید می‌گردد برای چهار حسگر به طور همزمان (7)

بعضی از نقاط اصلی تحقیقات محیطی و شناخته شده‌اند. این بخش‌ها به صورت زیر خوانده شده‌اند:

- **Flush Top** - 2
- **Flush Rear** - 3
- **Recessed side** - 4

Validation

با بررسی نمونه‌های فشار استاندارد و متحرک طیف قدرت از نمونه‌ها و بهبود این فشار استاندارد در چهار همراه با کلیه برای هر چهار حسگر می‌توان به‌طور خوبی آنها را با یکدیگر مقایسه نمود. این منحنی‌ها در شکل‌های (12) و (13) نشان داده شده‌اند.

مثال

در این بخش‌ها تاکید می‌گردد برای چهار حسگر به طور همزمان (7)

Flush Top - 2

Flush Rear - 3

Recessed side - 4

görü کردن آراستگی‌ها

Validation - 1
شماره مکان‌دار عامل‌های موجود در این سایر خشایی این نمودار به این شرح می‌باشد:

الف: سرعت دورانی 3000 دور بر دقیقه، باره تنفسی 100 دمای، زمان جریانی 15 درجه قبلاً از نقطه مکت بالا، لا اUNITY و دمای هواي ورودی 30 درجه سانتی‌گراد ب: سرعت دورانی 3000 دور بر دقیقه، باره تنفسی 100 دمای، زمان جریانی 17.5 درجه قبلاً از نقطه مکت بالا، لا اUNITY و دمای هواي ورودی 30 درجه سانتی‌گراد

چ: سرعت دورانی 3000 دور بر دقیقه، باره تنفسی 100 دمای، زمان جریانی 18 درجه قبلاً از نقطه مکت بالا، لا اUNITY و دمای هواي ورودی 30 درجه سانتی‌گراد

د: سرعت دورانی 3000 دور بر دقیقه، باره تنفسی 100 دمای، زمان جریانی 20 درجه قبلاً از نقطه مکت بالا، لا اUNITY و دمای هواي ورودی 30 درجه سانتی‌گراد

پایه‌های نگهداری شده شرایط خشایی از نمودار به این شرح است:

ج: 45-50 درجه بعد از نقطه مکت بالا ج: 30-35 درجه بعد از نقطه مکت بالا

یک‌تایی دقیق محدودیت بهره ورود نیاز در نقطه کاری مورد نظر (دور و باره تنفسی مشخص) به این شکل عمل می‌شود:

عظام فشار استنای از یک سالار بالاک‌تر با بسامد 2 کیلوهرتز عبور داده می‌شود. شرایط پایانی محاسباتی، حدود ورودی فشار بینیه تشخیص شده می‌باشد و پایان آن یکی از استانده نوسانات فشار تشخیص شده استر 20 کیلو‌پاسکال شود. توجه شود که محدوده نگهداری محاسباتی با به نظر رفتن تمامی شرایط کاری ممکن برای دور مکت و باره تنفسی مورد نظر از جمله رنگ، زمان جریان، دمای هواي ورودی و نوع شرایط سرعت دورانی 3000 دور بر دقیقه و باره تنفسی 100 دمای، این روشه در شرایط سرعت دورانی 3000 دور بر دقیقه و باره تنفسی 100 دمای، این مشخصات شده است.

د: سه طبقه شد. توجه شود که محدوده پایه‌های نگهداری شده فشار استنای مورد نظر است. در جهری‌بکار استنای لامیا، زمان جریانی و دمای هواي ورودی متغیرهای، (با شرایط

کورش نگهداری) پایه‌های شد. است.
برای محاسبه خودکار پنجره محاسباتی، می‌توان با تقرب مناسب از این روش استفاده نمود [12].

نتیجه‌گیری

این مقاله نشان داد که شدت کویش به دست آمده بر اساس تحلیل آنلاین، استفاده در شرایط ناراحتی‌های متغیرهای انتخاب شود. توجه شود که تغییرات در محاسبات داده‌ای است که باعث بهبود انتخاب شود. محتوای انتخاب‌گری شامل سامانه نموداری، تکرار چرخه‌ها مورد نیاز برای تشخیص صحیح کویش، محکمل نسبی حسگر و طرقی نسبی‌اند. منابع منسجم تحلیل داده‌ها شامل چندین صفحه از تحقیق و یکی از کلیه‌ی محاسباتی از چرخه‌ها مورد نظر تکرار شده و روش استفاده از این رای تشخیص کویش می‌باشد.

روش‌های متعددی برای تعیین شدت کویش با استفاده از علل فشار درون استاندارد وجود دارد. با توجه به نتایج این رشته در مرجع [6] برای ارزیابی روش‌های تعیین شدت کویش با استفاده از مقایسه نتایج آزمون در شرایط این‌ها، روش‌های ندعمگی منحنی فشار و مضیق سوم محتی فشار به عنوان روش‌های بهینه انتخاب شده‌اند. در شرایطی مبنی بر تغییرات بازیگری قربانی‌ها و فشار موضعی، لحاظ مانده در پیست زیستی به وجود دارد مانند سرعت‌های دوره‌ای. برای تعیین شدت کویش، این می‌باشد.

تمامی بین تعداد چرخ‌ها، سامانه نموداری و محاسبه پنجره

شکل 15: روابط مناسب (بعد از نقطه مکت بالا) برای شرایط پنجره محاسباتی بر حسب دور و باره‌تنفس

شکل 16: روابط مناسب (بعد از نقطه مکت بالا) برای شرایط پنجره محاسباتی بر حسب دور و باره‌تنفس

Resolution (CA) = rpm * 6 / 50000

از منابع: ابزارپرس ارکان
محاسباتی، برای به دست اوردن بهترین تکرارذیری و دقت و همچنین کمترین تخلیل مورد نیاز، می‌تواند انجام شود. این تبلیغ به نوع کاربرد و امکانات موجود بستگی دارد اما برای تنظیم موتور، تعداد ۱۰۰۰ جریه کاری و سامان نمونه‌برداری برای ۵۰ کیلوهertz پیشنهاد می‌شود. انتظار می‌رود که بنابر آن استفاده محدود جنگه محاسباتی و ارائه شده باشد که برای شبیه‌سازی داده‌های انرژی و بازدهی بر حسب دور و پاداش نسیم به دست می‌آید. اما به طور تقریبی می‌توان از ۵ تا ۲۵ درجه بعد از نقطه مکث بالا آن به‌عنوان محدوده پنجره محاسباتی برای این موتور انتخاب نمود.

ساساده‌ای از محاسباتی محدوده احتمال را به دست می‌آورد و هزینه این استفاده از نمودار تغییر یافته از محاسبه فشار استاندیار در شرایط خاص و گیجه کمی، می‌تواند به آنها را مزاهم به‌دست آورد. توجه شود که با سامان انسیاب نتایج این اثر کوچی برای این موتور حدود ۸ کیلوهertz می‌باشد. تعيين دقیق این سامادها برای برمی اثر تفسیر و مکان به‌هیله قرارگیری فشار قرار استاندیار کاربردی زیادی دارد.

محول نصب حسگر اثر مهمی روی دانه و سامان عالیم به دست آمده و بنابراین شدت کوچی محاسبه شده است. حسگر قرار گرفته در مرکز محیطی احتمال رسانده به حالات ارتباطی اصلی (محیطی) دارد و فقط به حالات ارتباطی ضعیف تشعشعات باشد می‌دهد.

۱۰- سیاست‌گزاری

بدین وسیله از همکاری شرکت ایپو در اجرای آزمایش‌ها و به ویژه آقایان به‌سرمایه، حاج باری و ماردی که اطلاعات ارزشمندی در اختیار قرار دادند، تشکر و قدردانی می‌گردد.

۱۱- فهرست علائم

<table>
<thead>
<tr>
<th>CA</th>
<th>Crank Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI</td>
<td>Knock Intensity</td>
</tr>
<tr>
<td>PKP</td>
<td>Peak Knock Pressure</td>
</tr>
<tr>
<td>PS</td>
<td>Power Spectrum</td>
</tr>
<tr>
<td>Zاوایل لک</td>
<td>شدت کوچی</td>
</tr>
<tr>
<td>فشار بیشینه کوچی</td>
<td>طیف قدرت</td>
</tr>
</tbody>
</table>
Effect Investigation of Important Parameters in Knock Detection Using Cylinder Pressure Data

M. Momeni*
Master of Science
Automotive Engineering Department
Iran University of Science & Technology (IUST)
m_momeni@ip-co.com

A.H. Kakaee
Assistant Professor
Automotive Engineering Department
Iran University of Science & Technology
kakaee_ah@iust.ac.ir

A. Mahmoudi
Master of Science
Irankhodro Powertrain Co. (IPCO)
a_mahmoudi@ip-co.com

M. Ghafuri
Master of Science
Irankhodro Powertrain Co. (IPCO)
m_ghafuri@ip-co.com

Abstract
Several parameters have significant effect on measure and analyzing of cylinder pressure to obtain accurate knock data. Acquisition frequency, number of cycles, transducer location and transducer mounting are measuring parameters. Filtering frequencies, knock windowing, knock model features and threshold values for knock intensity are important analyzing parameters. Effects of these parameters on knock detection and methods for optimal selection are investigated by analyzing test bench datasets. Note that optimal methods aren’t for special operating conditions and almost cover all operating points of engine. Important parameters for analyzing of transducers’ data, such as digital filtering and Fast Fourier Transformation (FFT), are introduced. FFT determines the main oscillation frequencies and digital filtering omits undesired frequencies.

Investigations of test results show that knock is occurred in special frequencies because of acoustic vibration modes, some methods for determining of these frequencies are introduced. It should be mentioned that the main oscillation frequency due to knock is about 8 kHz. Exact determination of these frequencies is important for investigation of filtering and optimal transducer location.

Keywords: Knock Detection, Cylinder Pressure, Sensitivity Analysis, Optimal Parameters, Spark Ignition Engine