مشخصه‌های راننده و تأثیر آنها بر میزان مصرف سوخت و آلاینده‌های خودروی دوره‌گیر برآورد

انتهایی متن جامعی

عباس فتحی
دانشجوی دکتری دانشگاه مکانیک دانشگاه علم و صنعت ایران
afotouhi@iust.ac.ir

اکبر نادرپور
دانشجوی کارشناسی ارشد دانشگاه مکانیک دانشگاه علم و صنعت ایران
a_naderpour@ip-co.com

چکیده
در این مقاله به مشخصه‌های راننده و میزان تأثیر آنها بر مصرف سوخت خودرو و آلاینده‌ها در گازهای خروجی مجزای دو بردانه گشته می‌شود. جمع‌آوری داده‌های راننده در شرایط شرایط مورد انتخاب مورد پذیرش گرفته است. فرآیند داده برداری به کمک سامانه پیشرفته موقعیت باب خودرو (AVL) که بر اساس قانونی و مکانیکی عمل می‌کند، انجام پذیرفته است. این شاخص بعد برای شرکت خودروی برنامه‌ریزی و مدل سنجی شده است. سپس به بررسی این مشخصه در داده‌های اضافه‌گیری شده برای شرکت خودروی برنامه‌ریزی و مدل سنجی شده است. همچنین تأثیر مشخصه‌های راننده بر مصرف سوخت و آلاینده‌های خودرو با استفاده از شبیه‌سازی نرم‌افزار ارزیابی شده است. برای این کار از نرم‌افزار Advisor برای شبیه‌سازی دو نوع خودرو سمند معمول و سمند دوره به موتور مدل اریجینال سو که به این شبکه است و نتایج شبیه‌سازی در صید و در نظر می‌گیرد. بنابراین در متن مقدمه شده است. در این تحقیق به‌منظور محاسبه میزان تأثیر مشخصه‌های راننده بر استفاده از یک شناخت کلی صورت گرفته و مشخصه‌های برتر شناسایی و معرفی شده‌اند. مشخصه‌های راننده مهتر را می‌توان در دستبندي شرایط شده‌امکان پذیری و توان را در بهبود خودروی دوره‌گیر استفاده کرد.

کلیدواژه‌ها:
مشخصه راننده، خودرو دوره‌گیر، مصرف سوخت، آلاینده

۱- مقدمه
امروزه استانداردهای سخت گیرانه محیط زیست و روند کذاب به رشد سوخت، بیشتر شرکت‌های خودروساز را بر آن داشته تا سید

Advance Vehicle Locating (AVL) systems-2
Driving Feature-2
Traffic Condition Clustering-1
Driving Pattern Classification-2
پایه‌گذاری ۱۰۴ از از افزایش تخصصی در این زمینه (Advisor, Matlab) برای رصد (AVL) و داده‌برداری به دقت ۶ ماه در سال شهروند و در شرایط شدید و رطوبت زیرزمین در این زمینه انجام شده است. تاکنون، شیپسازی در چند مورد برای پیشرفت علمی مقاله و صحبت‌گذاری شده است. در انتظار شناخته‌دهی مشخصه‌های رانندگی با استفاده از یک شناخت کلی، مدل کرمت و مشخصه‌های ایرانی مشخص شده است.

۲- داده برداری و بخش‌های رانندگی
در این مطالعه، سامانه بی‌سیمی موقتی بای‌گوردینگ (GSE) برای رصد (AVL) و داده‌برداری به دقت ۶ ماه در سال شهروند و در شرایط شدید و رطوبت زیرزمین در این زمینه انجام شده است. تاکنون، شیپسازی در چند مورد برای پیشرفت علمی مقاله و صحبت‌گذاری شده است. در انتظار شناخته‌دهی مشخصه‌های رانندگی با استفاده از یک شناخت کلی، مدل کرمت و مشخصه‌های ایرانی مشخص شده است.

۳- مشخصات خودرویی دوربرد برقی
الگو خودرویی مورد استفاده در این تحقیق، سمند دو‌سره با موتور ملی بنزینی بوده است که از ناحیهی سخته دو روي ۲ رنگ برای ارائه به شده در [۱۶] صورت گرفته است. مشخصات الگویی مذکور در جدول ۱ ادامه است.

در تحقیق حاضر برای یک هسته‌ای بار طیف وعیانی از مشخصه‌های رانندگی تعیین قرار گرفته است. تحقیقات آزمایشگاهی برای مصرف سوخت و اپن‌گردانی مجزا دو دی‌کار خودرویی مورد بررسی قرار گرفته است. تاکنون در دستگاه‌های استاندارد شرکت در چند مورد برای پیشرفت علمی مقاله و صحبت‌گذاری شده است. سپس، در مرحله دومی، نیروی ایرانی به همراه تغییراتی از هر کدام مطرح و با بهبودگیری از روش استریپ هم‌شکسته تحلیل و بررسی شده‌اند. به منظور بررسی وام‌ای نیروی ایرانی به سوخت و آلاینده‌های خودرو بر مشخصه‌های رانندگی، شیپسازی به

پایه‌گذاری ۱۰۴ از از افزایش تخصصی در این زمینه (Advisor, Matlab) برای رصد (AVL) و داده‌برداری به دقت ۶ ماه در سال شهروند و در شرایط شدید و رطوبت زیرزمین در این زمینه انجام شده است. تاکنون، شیپسازی در چند مورد برای پیشرفت علمی مقاله و صحبت‌گذاری شده است. در انتظار شناخته‌دهی مشخصه‌های رانندگی با استفاده از یک شناخت کلی، مدل کرمت و مشخصه‌های ایرانی مشخص شده است.

۲- داده برداری و بخش‌های رانندگی
در این مطالعه، سامانه بی‌سیمی موقتی بای‌گوردینگ (GSE) برای رصد (AVL) و داده‌برداری به دقت ۶ ماه در سال شهروند و در شرایط شدید و رطوبت زیرزمین در این زمینه انجام شده است. تاکنون، شیپسازی در چند مورد برای پیشرفت علمی مقاله و صحبت‌گذاری شده است. در انتظار شناخته‌دهی مشخصه‌های رانندگی با استفاده از یک شناخت کلی، مدل کرمت و مشخصه‌های ایرانی مشخص شده است.

۳- مشخصات خودرویی دوربرد برقی
الگو خودرویی مورد استفاده در این تحقیق، سمند دو‌سره با موتور ملی بنزینی بوده است که از ناحیهی سخته دو روي ۲ رنگ برای ارائه به شده در [۱۶] صورت گرفته است. مشخصات الگویی مذکور در جدول ۱ ادامه است.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>HEV Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>Engine scale</td>
<td></td>
</tr>
<tr>
<td>Aerodynamic drag</td>
<td>ft-lbf/kg-m</td>
</tr>
<tr>
<td>Frontal area</td>
<td>m²</td>
</tr>
<tr>
<td>Friction of vehicle weight on front axle</td>
<td></td>
</tr>
<tr>
<td>Height of vehicle center-of-gravity</td>
<td>m</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>m</td>
</tr>
<tr>
<td>Combustion Engine</td>
<td></td>
</tr>
<tr>
<td>Peak engine power</td>
<td>kW</td>
</tr>
<tr>
<td>Rotational inertia of the engine</td>
<td>kg-m²</td>
</tr>
<tr>
<td>Total engine/fuel system mass</td>
<td>kg</td>
</tr>
<tr>
<td>Fuel density</td>
<td>g/l</td>
</tr>
<tr>
<td>Lower heating value of the fuel</td>
<td>kJ/g</td>
</tr>
<tr>
<td>Exterior surface area of engine</td>
<td>m²</td>
</tr>
<tr>
<td>Air/fuel ratio (stoic) on mass basis</td>
<td></td>
</tr>
<tr>
<td>Engine coolant thermostat set temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Average cp of engine</td>
<td>J/kgK</td>
</tr>
<tr>
<td>Average cp of hood & engine compartment</td>
<td>J/kgK</td>
</tr>
<tr>
<td>Surface area of hood/eng comp.</td>
<td>m²</td>
</tr>
<tr>
<td>Electrical Motor</td>
<td></td>
</tr>
<tr>
<td>Electrical motor type</td>
<td></td>
</tr>
<tr>
<td>Hawker Genesis VRLA battery</td>
<td></td>
</tr>
<tr>
<td>Maximum over torque capability</td>
<td></td>
</tr>
<tr>
<td>Mass of motor and controller</td>
<td>kg</td>
</tr>
<tr>
<td>Ave heat capacity of motor/ controller</td>
<td>J/kgK</td>
</tr>
<tr>
<td>Maximum current allowed</td>
<td>A</td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Total vehicle mass</td>
<td>Kg</td>
</tr>
<tr>
<td>The number of batteries</td>
<td></td>
</tr>
<tr>
<td>Batteries Types</td>
<td></td>
</tr>
<tr>
<td>Hawker Genesis VRLA battery</td>
<td></td>
</tr>
</tbody>
</table>
سرعت دوری‌های موتور از آزمون استاندارد [18] به تدریج و پیشرفت کننده (MAP) موتور احتمالی به شکل قابل
پذیرش در نرم افزار

3- انتزاع بخش راننگی که با معادله (3) بدست می‌آید.

\[
\sigma = \frac{1}{n} \sum_{i=1}^{n} (v_i - \bar{v})^2
\]

\[
\bar{v} = \frac{1}{n} \sum_{i=1}^{n} v_i
\]

\[
E = \sum_{i=1}^{n} v_i^2
\]

4- احوارع میارسی مETO موتور احتمالی به شکل قابل

\[
\sigma_R = \frac{1}{n} \sum_{i=1}^{n} (a_i - \bar{a})^2
\]

\[
\bar{a} = \frac{1}{n} \sum_{i=1}^{n} a_i
\]

\[
\sum_{i=1}^{n} v_i^2
\]

5- درصد زمان توقف؛ درصد زمانی است که در طول یک بخش

راننگی خودرو کاملاً ایستاده است.

6- سرعت پیشنهاد؛ یک مقدار سرعت در طول یک بخش راننگی.

7- سرعت کمینه؛ یک مقدار سرعت در طول یک بخش راننگی.

8- احوارع پیشنهاد و کمینه در طول یک بخش راننگی.

9- میانگین شتاب؛ میانگین مقدار شتاب در طول یک بخش راننگی

\[
a_{mean} = \frac{1}{n} \sum_{i=1}^{n} a_i
\]

10- احوارع میارسی شتاب؛ احوارع میارسی مقدار شتاب در طول یک

بخش راننگی می‌باشد و با معادله (6) بدست می‌آید.

\[
A.A. = \frac{1}{na} \sum_{i=1}^{n} a_i
\]

11- میانگین شتاب‌گیری در طول یک بخش راننگی که با معادله

\[
a = \frac{1}{n} \sum_{i=1}^{n} a_i
\]

12- میانگین ترمز‌گیری در طول یک بخش راننگی که با معادله

\[
v_{mean} = \frac{1}{n} \sum_{i=1}^{n} v_i
\]

13- درصد زمان حرکت با سرعت ثابت که با معادله (9) بدست

\[
M = \frac{1}{n} \sum_{i=1}^{n} a_i
\]

می‌آید که در آن فاصله Q تعداد سرعت ثابت و Q زمان کل

بخش راننگی می‌باشد.
رایگان چون مشخصه‌های رانندگی در این به‌درستی یا درستی درصد مشخصه‌های عدید ذکر شده در قسمت قبل پرداخته شده است. برای این منظر از تحلیل هستی‌گری نتایجی، ضریب همبستگی در واقع می‌گویم که این به‌دلایل گری و بازیگری خیلی دو معیار می‌یابند، بنابراین به نحو که افزایش یا کاهش یکی چه تأثیرگذار متغیر دیگر دارد. ضریب همبستگی، r_{XY}، بین دو متغیر تصادفی X و Y با مقدار آمیزی ریاضی و μ_Y و انحراف معیار σ_Y و σ_X به‌دست می‌آید:

$$r_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y} \tag{14}$$

که به این شکل نیز قابل ساده می‌باشد:

$$r_{XY} = \frac{E(XY) - E(X)E(Y)}{\sqrt{E(X^2) - E^2(X)} \sqrt{E(Y^2) - E^2(Y)}} \tag{15}$$

در معادلات (14 و 15) σ نتایج کاهش ریاضی می‌یابند برای ضریب همبستگی به ترتیب مقدار محدود و غیرمحدود قابل تعرف است و در رشته‌های زمانی ضریب همبستگی پیدا سایر بسته می‌آید:

$$r_k = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})(x_{i+k} - \bar{x}) \tag{16}$$

که در آن r_k مقدار رشت در زمان t را نمایش می‌دهد:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{17}$$

شایع ذکر است که ضریب همبستگی برای y به معنی بودن کامل و مستقیم دو متغیر تصادفی می‌باشد: افزایش یکی با افزایش دیگر هر ماه خواهد بود و عكس، به همین ترتیب ضریب $r = 1$ تا نهایت بیوند کامل و عکس دو متغیر می‌باشد به این معنی که افزایش یکی، کاهش دیگری را در بر خواهد داشت. ضریب سفر نیز نشان دهنده استقلال دو متغیر می‌باشد [19].

<table>
<thead>
<tr>
<th>مشخصه‌های تعیین‌شده برای بخش‌های شده</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of Velocity</td>
<td>میانگین سرعت</td>
</tr>
<tr>
<td>Average Accelerating</td>
<td>سرعت متوسط</td>
</tr>
<tr>
<td>Average Decelerating</td>
<td>سرعت کاهشی</td>
</tr>
<tr>
<td>Cruise Percentage</td>
<td>درصد سرعت</td>
</tr>
<tr>
<td>Displacement</td>
<td>تغییرات</td>
</tr>
<tr>
<td>Minimum Acceleration</td>
<td>سرعت مینیموم</td>
</tr>
<tr>
<td>Maximum Acceleration</td>
<td>سرعت مکمک</td>
</tr>
<tr>
<td>Relative Positive Acceleration</td>
<td>سرعت مثبت</td>
</tr>
<tr>
<td>Relative Negative Acceleration</td>
<td>سرعت منفی</td>
</tr>
<tr>
<td>Mean of Acceleration</td>
<td>میانگین تغییرات</td>
</tr>
<tr>
<td>(max velocity)-(min velocity)</td>
<td>نتیجه نشان دهنده شکست</td>
</tr>
<tr>
<td>Mean of Acceleration</td>
<td>میانگین تغیرات</td>
</tr>
</tbody>
</table>
| % time acceleration>1.5 | زمانی که تغییرات بیش از 1.5\% رخ داده
| % time v.a.is 3-6 m^2/s^3 | زمانی که تغییرات بین 3-6 m^2/s^3 رخ داده

دانشمندان علمی: با توجه به تحقیقات موجودی بین‌المللی و ایرانی‌ها و آزمون‌های دسترسی‌های شما، درصد زمانی که سرعت بیش از 1.5\% رخ داده 20\% و زمانی که تغییرات بین 3-6 m^2/s^3 رخ داده 31\% بوده است.
<table>
<thead>
<tr>
<th>feature pair</th>
<th>pair number</th>
<th>correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>variance of velocity & (max velocity)-(min velocity)</td>
<td>(2,4)</td>
<td>0.852</td>
</tr>
<tr>
<td>energy & maximum velocity</td>
<td>(3,6)</td>
<td>0.829</td>
</tr>
<tr>
<td>energy & minimum velocity</td>
<td>(2,8)</td>
<td>0.824</td>
</tr>
<tr>
<td>energy & maximum velocity</td>
<td>(3,7)</td>
<td>0.821</td>
</tr>
<tr>
<td>minimum acceleration & mean of acceleration square</td>
<td>(15,17)</td>
<td>-0.805</td>
</tr>
<tr>
<td>variance of acceleration & minimum acceleration</td>
<td>(10,15)</td>
<td>-0.805</td>
</tr>
<tr>
<td>mean of acceleration square & relative negative acceleration</td>
<td>(17,19)</td>
<td>-0.816</td>
</tr>
<tr>
<td>variance of acceleration & relative negative acceleration</td>
<td>(10,19)</td>
<td>-0.817</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>feature pair</th>
<th>pair number</th>
<th>correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean of velocity & displacement</td>
<td>(1,16)</td>
<td>1.000</td>
</tr>
<tr>
<td>variance of acceleration & mean of acceleration square</td>
<td>(10,17)</td>
<td>1.000</td>
</tr>
<tr>
<td>energy & displacement</td>
<td>(3,16)</td>
<td>0.963</td>
</tr>
<tr>
<td>mean of velocity & energy</td>
<td>(1,3)</td>
<td>0.963</td>
</tr>
<tr>
<td>mean of velocity & maximum velocity</td>
<td>(1,6)</td>
<td>0.881</td>
</tr>
<tr>
<td>variance of velocity & variance of energy</td>
<td>(6,16)</td>
<td>0.881</td>
</tr>
</tbody>
</table>

Velocity Dependent Driving Features

Acceleration Dependent Driving Features

Independent Driving Features

Idle time percent –
Cruise percent –
\[
\begin{align*}
\text{index 1} &= \frac{1}{n} \sum_{i=1}^{n} (F_i - \overline{F})^2 = \frac{1}{n} \sum_{i=1}^{n} (F_i - \overline{F})^2 = \frac{1}{n} (n-1) \sum_{i=1}^{n} (F_i - \overline{F})^2 = \frac{1}{n} (n-1) \sum_{i=1}^{n} (F_i - \overline{F})^2 = (\overline{F})^2 \\
\text{here} \rightarrow F_1 = F_2 = \ldots = F_n = \overline{F}
\end{align*}
\]

که در آن \(n \) تعداد گروه‌های شاخص، \(F_i \) مشخصه بخش راندگی 1 ام و \(F \) و میانگین مشخصه شاخص می‌باشد.

- مشخصه ای که تغییرات کند داشته باشد برای دستگاه شرایط شاخص مناسب‌تر می‌باشد. چراکه اول‌اکینگ خودروی دورگه نیز می‌تواند با فرست بیشتری با شرایط شاخص جدید مشخص کرد و کمک دارد تغییرات ناگهانی خواهد شد و تاثیز در واقع شرایط شاخص تغییرات خیلی سریع ندارد و یاد پیش‌هم‌عیف شود که تغییرات جذور می‌شود سریع نداشتند. برای این مورد می‌توان مقدار عادی سازی شده معکوس نمایشی تغییرات در مشخصه را دارد. در این مورد نظر سازی هر مشخصه مداومه (19) بکار رفته است:

\[
\text{index 2} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{(3 \overline{F}_i - F_i)^2}{(2 \overline{F})^2} - (\frac{1}{n-1} \sum_{i=1}^{n} (F_i - \overline{F})^2) \right)
\]

\[
\text{here} \rightarrow F_1 = F_2 = \ldots = F_n = \overline{F}
\]

که در آن \(n \) تعداد گروه‌های شاخص، \(F_i \) مشخصه بخش راندگی 1 ام و \(F \) و میانگین مشخصه شاخص می‌باشد.

- مشخصه ای که تغییرات بیشتری با مصرف سوخت خواهد داشته باشد برای دستگاه شرایط شاخص مناسب‌تر می‌باشد. چراکه اول‌اکینگ خودروی دورگه نیز می‌تواند با فرست بیشتری با شرایط شاخص جدید مشخص کرد و کمک دارد تغییرات ناگهانی خواهد شد و تاثیز در واقع شرایط شاخص تغییرات خیلی سریع ندارد و یاد پیش‌هم‌عیف شود که تغییرات جذور می‌شود سریع نداشتند. برای این مورد می‌توان مقدار عادی سازی شده معکوس نمایشی تغییرات در مشخصه را دارد. در این مورد نظر سازی هر مشخصه مداومه (18) استفاده شده است.
در این تحقیق به میزان مشخصه‌های راننگی، پیوند آنها و همچنین تأثیر آنها بر مصرف سوخت و آلودگی خودرو پرداخته شد. جمع آوری داده‌های راننگی در شرایط شرکت واقعی و به کمک یک سامانه پیشرفته موقعیت‌بایاب خودرو (AVL) که بر اساس نظارت موقعیت‌بایاب عمل می‌کند، انجام دیده شد. ۲۱ عدد مشخصه راننگی بر اساس شرایط زمینی سرعت خودرو تعیین و بررسی شد. پیوند بین مشخصه‌های راننگی به مدول نتایج مشخصه‌های مسئول بررسی شد. همچنین تأثیر مشخصه‌های راننگی بر مصرف سوخت و آلودگی خودرو با استفاده از شبیه‌سازی رایانه‌ای ارزیابی شد. برای این کار از نرم افزار Advisor برای شبیه‌سازی دو نوع خودرو سمند معمولی و سمند دوره‌ای با موتور ملی پنizuسوز بهره برده شد و نتایج شبیه‌سازی در جن مورد تایید می‌باشد و به‌دست آمده است. این سیستم در نتایج شبیه‌سازی با استفاده از یک شاخه گل صورت گرفت و مشخصه‌های پرتر شناسایی و مصرف شدن مشخصه‌های راننگی مهم‌تر را می‌توان در دسته‌بندی شرایط شدناهاد، توسعه و اجرایی‌سازی راننگی، دسته‌بندی الگوهای راننگی و پایش هوشمند خودروهای دوره‌گذی استفاده گردید.

چنین شاخص‌های پایان‌داره با یک از ۲۱ مشخصه محاسبه و عادی سازی گردند، مشخصه‌های که در مجموع بهترین مقادیر شاخص مجموعی را دارا باشند انتخاب خواهند شد. نتایج این تحلیل در جدول ۵ آمده است. با توجه به تعیین شاخص کل و نتایج ارائه شده، مشاهده می‌گردد که برترین مشخصه‌های دسته IDF و VDDF و انتخاب پیش‌تری نسبت به دسته ADDF برخوردارند.

<table>
<thead>
<tr>
<th>Hybrid Samand (Electric Assist Controller)</th>
<th>Feature Name</th>
<th>Feature No.</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>3</td>
<td>0.6481</td>
<td></td>
</tr>
<tr>
<td>Mean of Velocity</td>
<td>1</td>
<td>0.6259</td>
<td></td>
</tr>
<tr>
<td>Displacement</td>
<td>16</td>
<td>0.6256</td>
<td></td>
</tr>
<tr>
<td>Maximum Velocity</td>
<td>6</td>
<td>0.5950</td>
<td></td>
</tr>
<tr>
<td>Minimum Velocity</td>
<td>7</td>
<td>0.5401</td>
<td></td>
</tr>
<tr>
<td>Idle Time Percentage</td>
<td>5</td>
<td>0.4785</td>
<td></td>
</tr>
<tr>
<td>Cruise Percentage</td>
<td>13</td>
<td>0.4765</td>
<td></td>
</tr>
<tr>
<td>Variance of Energy (max velocity)-(min velocity)</td>
<td>4</td>
<td>0.4549</td>
<td></td>
</tr>
<tr>
<td>Average Accelerating</td>
<td>11</td>
<td>0.3707</td>
<td></td>
</tr>
<tr>
<td>Relative Positive</td>
<td>18</td>
<td>0.3446</td>
<td></td>
</tr>
<tr>
<td>Acceleration (RPA)</td>
<td>14</td>
<td>0.3342</td>
<td></td>
</tr>
<tr>
<td>Maximum Acceleration</td>
<td>2</td>
<td>0.3227</td>
<td></td>
</tr>
<tr>
<td>Variance of Velocity</td>
<td>12</td>
<td>0.308</td>
<td></td>
</tr>
<tr>
<td>Average Deceleration</td>
<td>20</td>
<td>0.293</td>
<td></td>
</tr>
<tr>
<td>Minimum Acceleration</td>
<td>15</td>
<td>0.2889</td>
<td></td>
</tr>
<tr>
<td>% time v.a is 3-6</td>
<td>21</td>
<td>0.2873</td>
<td></td>
</tr>
<tr>
<td>Relative Negative</td>
<td>19</td>
<td>0.2820</td>
<td></td>
</tr>
<tr>
<td>Acceleration (RNA)</td>
<td>10</td>
<td>0.2811</td>
<td></td>
</tr>
<tr>
<td>Variance of Acceleration</td>
<td>17</td>
<td>0.2807</td>
<td></td>
</tr>
<tr>
<td>Mean Square Acceleration</td>
<td>9</td>
<td>0.1904</td>
<td></td>
</tr>
</tbody>
</table>
Reference:
Driving Features and Their Influences on Hybrid Electric Vehicle’s Fuel Consumption and Exhaust Emissions

M. Montazeri
Associated professor
montazeri@iust.ac.ir

A. Fotouhi
PhD candidate
afotouhi@iust.ac.ir

A. Naderpour*
MSc student
a_naderpour@ip-co.com

Systems simulation and control Laboratory,
Department of Mechanical Engineering,
Iran University of Science and Technology (IUST)

Abstract
This paper presents driving features and their influences on the vehicle’s fuel consumption and exhaust emissions; driving data gathering is performed in real traffic conditions in order to provide the velocity time series. Advance Vehicle Locating (AVL) systems based on GPS technology are used for driving data collection. Then 21 driving features are defined based on vehicle’s velocity time series. After the extraction of features from the driving data, relation between the features is investigated in order to determine independent features. The influence of the selected features on vehicle’s fuel consumption and pollutant emissions is then studied using computer simulations. The Advisor software is utilized here for two types of vehicles, conventional SAMAND and hybrid SAMAND (HEV), simulation results are compared with test results in some cases. Finally the most effective driving features are determined by a total index and superior features are identified and presented as the result of this study. These superior features can be used in traffic condition clustering, driving cycle development, traffic condition clustering and intelligent HEV control.

Keywords: Driving Feature, Hybrid Vehicle, Fuel Consumption and Exhaust Emission.