برزرسی تجربی و شیبهدسای ریاضی فرآیند احتراق سوخت بیودیزل حاصل از روحگ پسماند

یحیی نجفی
استاد دانشگاه ملی اردبیل
Najafib@uma.ac.ir

چکیده
بیودیزل به عنوان سوخت جایگزین گازوئیل به آسانی قابل استفاده در موتور دیزل است و دوستانه مهیجی ریسنت می‌باشد. در این تحقیق برای پیشگویی فرآیند احتراق مخلوط سوخت بیودیزل حاصل از روح‌پسماند با گازوئیل در یک موتور دیزل دور افتادن (لیستر/MA)، از یک الگوی تکمیل و ایجاد ایجاد بر اساس نیز یک مقادیر بیشگوئی شده، بر اساس تست کوتاه مدت موتور انجام یافته تا تجربیاتی و شبیهدسای ریاضی نشان داد که مقدار بیشگوئی شده تفاوت داخل استوانت و آهستگی گرمایش جدا شده به مقدار تجارب توافق خوبی دارد. همچنین، تجربی اکتشافی که از این واقعیت است که با افزایش ۲۰ بیودیزل به گازوئیل مشخصه‌ها به‌طور فیزیک داخل محیط‌اتری، سطح خروجی افزایش یافته است. از این نکته نشان می‌دهد که برای کارایی مناسب موتور افزایش بیو می‌کند و باید به‌هنوی کیفیت احتراق انتشار ابتدایی موتوکسی و هیدروکربن نسخه‌ها کاهش منابع می‌باید. ویلم مقدار NOx انگیز افزایش می‌باید. مصرف سوخت ویژه اجرای امر در این مخلوط تقیقاً برای سوخت گازوئیل می‌بایست که به ناحیه محاسبه بسیار مهم است.

کلیدواژه‌ها: مخلوط بیودیزل، ازآمایش تجربی، شبیهدسای فرآیند احتراق، عوامل عملکرد و انتشار ابتدایی

1- مقدمه
بیودیزل، استردهای مولکولی اسیدهای جرب با زنجیر طول است که از منابع طبیعی تجدیدپذیر مانند روغن‌های گیاهی با جربه‌های حیوانی تهیه می‌شود و دراری فرمول شیمیایی

\[3C_{1}H_{2}OOCCH_{3}\]

می‌باشد. به مطابق استفاده از این سوخت در موتورهای احتراق داخی، لازم است نشان داده شود که مدل مولکولی بیودیزل و گازوئیل متفاوت است. به‌طور کلی، برای اشتغال سوخت که در سیستم‌های مولکولی موفق بوده، می‌توان به مدل مولکولی بیودیزل و گازوئیل اشاره کرد.

با توجه به اینکه موتور لیستر از نوع پاپا به‌صورت غیر مستقیم (IDI) است، برای ساده‌سازی گذاری، فشار و بار داخل محیط تغذیه اصلی و منفعتی بیش از به‌صورت یکپارچه و همگن فرض می‌شود. بنابراین، معادله دوم مطابق با شکل مدل می‌شود:

\[dE + dW + dQ - dm \gamma_{\text{q}} = 0 \]

(5)

که ارزش حرارتی کم سوخت را به‌صورت واحد جرم، \(q_{\text{q}} \) بر اساس انرژی حرارتی از حجم کنترل، تغییر انرژی انرژی‌های داخلی به‌وسیله تغییرات دما و واکنش‌های شیمیایی درون مخالط و \(dW \) کار انجام شده بار است. بنابراین، در جریه کار موتور، به کام از اینجاهایی که قابل محاسبه می‌باشد، می‌شود:

\[B.C_{\text{r}}H_{\text{16}}O_{\text{8}} + (1-B)C_{\text{r}}H_{\text{16}} = C_{\text{r}}H_{\text{16}}H_{\text{2}}O_{\text{8}} \]

(6)

در این تحقیق از یک واکنش احتمالی برای احتمال مخلوط سوخت بیوزدیزل با گازوئیل استفاده گردید:

\[\frac{39B+16)CO_{2} + (375B+15)H_{2}O +}{C_{\text{r}}H_{\text{16}}H_{\text{2}}O_{\text{8}}} \]

(7)

حال اگر از طی فلز کامل قابل مدل سوخت مخلوط محترق \(M \) برابر مربوط به سوخت بیوزدیزل و \(B \) برابر مربوط به سوخت کامل \(M \) باشد، از این صورت ارتباط ولایه اکسیژن به

\[FRR = k \cdot \frac{P_{\text{r}}}{{N}_{\text{P}}{\text{V}}} \cdot \text{Exp}(\frac{E_{\text{act}}-E_{\text{tr}}}{T} \cdot \text{FPR} - \text{FRR}) \]

(4)

در این معادله: \(FPR \) و \(FRR \) مدل سوخت بیوزدیزل و \(E \) برحبس کپسول، \(T \) تقاضای انرژی \(E_{\text{act}} \) تاکید می‌کند. مدل سوخت اکسیژن مربوط به سوخت طبیعی و \(T \) مورد مورد می‌باشد. فرض می‌شود که در کار اکسیژن سوخت شرکت نکرد و تعداد ولایه آن محوره بابت است و لگدآن، بردا و فشار محیط احتمال انتقال‌گذار هست. موتورهای احتمال تراکمی عموماً با

\[A_{\text{r}} \propto n_{\text{r}}(\frac{M_{\text{r}}}{n})^{\frac{2}{3}} \]

(1)

\[A_{\text{r}} \propto M_{\text{r}}^{\frac{1}{3}} \]

(2)

بر این اساس، آهنگ آماده‌سازی سوخت به‌صورت اکسی‌ژن

\[k \cdot M_{\text{r}}^{\frac{1}{3}} \cdot P_{\text{r}}^{\frac{1}{3}} \]

(3)

بنیان می‌شود:

\[\text{Fuel Preparation Rate} \]

\[\text{Fuel Reaction Rate} \]
2-3 محااسبه مقدار کار

مقدار کار انتقال شده در هر گام از معادله (18) محسوب می‌شود:

\[
\begin{align*}
\theta_i &= \frac{P_2}{P_1}, V_i - V_f, \theta_i \\
\end{align*}
\]

که در این معادله: \(P_1\) و \(P_2\) به ترتیب فشار و حجم در شروع گام و \(V_i\) و \(V_f\) فشار و حجم در خانه می‌باشد.

2-6 محااسبه هندسی (حجم و مساحت جانبی استوانه) در شرایط محاسباتی باشد فشار و دما به اندازه و ترکیب مولیان استوانه معلوم باشد. محاسبات به صورت گام به گام و بر اساس تغییرات درجه میلینگ می‌باشد. مشابه کارهای گذشته دقت مورد نظر می‌تواند یک درجه بی‌پشتی باشد. برای محاسبه حجم استوانه در هر گام با توجه به مشخصات هندسی آن (شکل ۱) از معادله (۱۹) استفاده می‌شود:

\[
\begin{align*}
V(\theta) &= V_c + \pi D^2 \left(\frac{L + R (1 - \cos(\theta))}{4} - \sqrt{L^2 - R^2 \sin^2(\theta)}\right) \\
\end{align*}
\]

در معادله فوق حجم استوانه، تغییر درجه، نسبت سطح، \(D\) طول دسته سپهر و \(L\) ضریع مدار، \(\theta\) درجه فکری مورد نظر است. \(V_c\) حجم فضای مشتری از روی حجم جابجایی شده با سپهر و نسبت قرار گرفته از معادله \(V_d = (\pi/4)D^2S\) که محسوب می‌شود [۶].

\[
E(T_i) = b_{CO_2} U(T_i) C_{CO_2} + b_{H_2O} U(T_i) C_{H_2O} + b_{O_2} U(T_i) C_{O_2} + b_{N_2} U(T_i) C_{N_2} + b_{FG} U(T_i) C_{FG}
\]

۶۳
در این مدل، دما T_e مثالی گازهای داخل محیط احتراق در دو
گام زمانی و برای α_i و α_f مقدار ثابت دارد.

است که فرض می‌شود در حالت کاری ثابت، مقدار ثابت دارد. سطح تابدل حرارت Q بین گازهای داخل محیط احتراق و دیوارها
تأیید از موقعیت سمبه است و در تابع بیشاب می‌شود.

محاسبه می‌شود:

$$
As(\theta) = A_w + A_b + A_p = \left\{ \begin{array}{l}
\frac{V_c}{(D/4)} + \pi D (L + a(1 - \cos(\theta)) - \frac{\sqrt{L^2 - a^2 \sin^2(\theta)} + 2 \frac{\pi D^2}{4}} \\
\end{array} \right.
(37)
$$

همچنین ضریب حرارت گازهای داخل محیط احتراق می‌باشد
که با فرض عدد پرائل $Re = \rho \bar{V} D / \mu$ می‌شود که
ρ ضریب تابدل گاز هوا، \bar{V} سرعت متوسط سمبه، D دور موتور در ثانیه و μ ماده گازی دانیمک کل گازهای داخل محیط احتراق است که تابد از دمای متوسط گازهای داخل محیط احتراق به صورت تابع f تابع می‌شود [8]:

$$
\frac{\partial Q}{\partial t} = As \left(\frac{a K_e}{D} Re^b (T_e - T_w) + c(T_e^4 - T_w^4) \right)
(38)
$$

که δ ثابت است. می‌باشد و ضریب صورت K_e این اصل به صورت $Re = \rho \bar{V} D / \mu$ می‌باشد.

در نهایت برای محاسبه این اصل باید C_p محیط احتراق و a, b تغییرات را بررسی کنیم. با عبارت (31) در عدد

$$
\bar{V}_o = C_d \sqrt{\frac{2 (P_{inj} - P)}{\rho_F}}
(33)
$$

که به ترتیب فشار متوسط داخل استوانه و فشار پاشش
P_{inj} و P می‌باشد.
میلی‌نائلی‌های است که برای برخی آن‌ها در جرایم دیگر (مثلاً سوخت‌های مخاط) ضریب تخلیه دسترسی به مقداری از سوخت‌های از اکثر هایشان به‌طور کلی کاهش‌یافته است. در اینجا اکثریت سیستم‌های مخاط از دو نوع مخلوط شیمیایی تشکیل شده‌اند. سیستم‌های مخلوط باید به‌طور کلی دارای مقدار میلی‌نایلی‌های بسیار مختلف باشند تا می‌تواند در مورد سیستم‌های مخاط کاهش‌یافته‌ای باشد. در این مورد میلی‌نایلی‌های پایین‌تر از اکثر سیستم‌های مخاط می‌توانند استفاده شوند.

\[
\theta_{\text{physical id}} = \frac{Q_{\text{random}} - Q_{\text{measured}}} {Q_{\text{random}}}
\]

محل‌بندی مدل‌های استقامت مخلوط سوخت بی‌سیاه‌پوش، کاخوریل، چربی مخاط سوخت مخلوط و مخلوط تخلیه جرایم از اکثریت مخاطی‌های است. در اینجا اکثریت سیستم‌های مخاط از دو نوع مخلوط شیمیایی تشکیل شده‌اند. سیستم‌های مخلوط باید به‌طور کلی دارای مقدار میلی‌نایلی‌های بسیار مختلف باشند تا می‌تواند در مورد سیستم‌های مخاط کاهش‌یافته‌ای باشد. در این مورد میلی‌نایلی‌های پایین‌تر از اکثر سیستم‌های مخاط می‌توانند استفاده شوند.

\[
\frac{dm_s}{dt} = \frac{\pi d^2}{4} V_s \rho_f \cdot \text{HNN}
\]
مقدار سوخت محترق‌شده تا انتهای این گام نیز برابر است با:

\[(TFR)_n = \sum_{i=1}^{n} (dFRR)_i \]

(31)

جرم سوخت آماده شده در طول این گام از ماده‌الدین (23) به‌دست می‌آید.

بنابراین در این‌گونه شرایط‌ها، فرمول برای اندازه‌گیری مقدار سوخت محترق‌شده در طول این گام کاملاً مناسب است:

\[(TFR)_n = (TFI)_n - (TFP)_n \]

(32)

در نتیجه، آهنگ آماده‌سازی در طول گام عبارت است از:

\[(dFPR)_n = \frac{K_s (TFMI)_n^2}{((TFMI)_n - (TFP)_{n-1}) P_0^2} \]

(33)

و کل سوخت آماده‌شده تا انتهای گام از ماده‌الدین (2) استفاده می‌کشد که در آن:

\[(FPR - FRR) d\theta = (TFP)_{n-1} - (TFR)_{n-1} \]

(34)

بنابراین آهنگ و اکثر در طول این گام عبارت از:

\[\frac{(dFRR)_{n-1}}{N_{FRR}} \]

(35)

و کل جرم سوخت آماده‌شده تا انتهای این گام عبارت است از:

\[(TFR)_{n-1} = (TFR)_{n-1} + (dFRR)_{n-1} \Delta \theta \]

(36)

مطالب با الگوی Whitehouse-Way در ابتدا برای اجرای مجموع

```plaintext
فلسفه علمی - بروز روند تحقیقات موثراسال بین‌نشان شده‌اند از دستورالعمل 1388
```

Downloaded from engineresearch.ir at 22:37 +0330 on Sunday March 8th 2020
۳ بحث بر روی نتایج
الگوی ارائه شده در این تحقیق، فاصله پیش‌بینی عوامل عملکرد موتور برای شش نوع مخلوط سوخت‌های آزمایش، دارد.

۳-۱ بیش از ۲۰ نمونه فشار داخل استوانه
شکل‌های ۲ تا ۸ محتوی‌های (P_{\text{\textit{p}}}-\theta) حاصل از الگوی کامپوتری و نتایج آزمایش‌های تجربی را برای مخلوط‌های مختلف سوخت بیودیزل در بار ۴۵/۸۴/۴۲۳ بار نهایی دی نیوتن-متر (۷۲ نیوتن-متر) و دور موتور ۷۲۴ دور بر دقیقه، نشان می‌دهد. در این محتوی‌ها قطعه پیک فشار برای هر دو حالت پیش‌بینی شده و اندازه‌گیری شده، دقیقاً بر هم منطبق است.
همچنین محل وقوع ارتفاع پیک آنیخه (در انتهای دوره مهلت اشعال) نیز به‌کمی بر هم منطبق می‌باشد.

<table>
<thead>
<tr>
<th>نوع سوخت</th>
<th>شدت حرارتی (kJ/kg)</th>
<th>ضریب اندازه‌گیری محاسبه‌شده</th>
<th>پیش‌بینی محاسبه‌شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>B10</td>
<td>۴۲/۲۵</td>
<td>۴۵/۷۵</td>
<td>۴۸/۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۱/۷۵</td>
<td>۴۵/۶</td>
<td>۴۸/۶۶</td>
</tr>
<tr>
<td></td>
<td>۴۰/۲۵</td>
<td>۴۵/۸</td>
<td>۴۸/۸۸</td>
</tr>
<tr>
<td></td>
<td>۳۹/۷۵</td>
<td>۴۵/۹۹</td>
<td>۵۰/۰۷</td>
</tr>
<tr>
<td></td>
<td>۳۸/۲۵</td>
<td>۴۵/۳۹</td>
<td>۵۱/۶۱</td>
</tr>
<tr>
<td></td>
<td>۳۷/۷۵</td>
<td>۴۵/۹۹</td>
<td>۵۲/۶۱</td>
</tr>
</tbody>
</table>

شکل ۳ پیش‌بینی فشار داخل محفظه‌ای احتراق ۵۰٪ بیودیزل

شکل ۵ پیش‌بینی فشار داخل محفظه‌ای احتراق ۲۰٪ بیودیزل خالص

شکل ۲ پیش‌بینی فشار داخل محفظه‌ای احتراق ۲۰٪ بیودیزل

شکل ۴ پیش‌بینی فشار داخل محفظه‌ای احتراق ۱۰٪ بیودیزل

شکل ۳ نمودار فشار داخل محفظه‌ای احتراق ۵۰٪ بیودیزل

شکل ۴ نمودار فشار داخل محفظه‌ای احتراق ۲۰٪ بیودیزل خالص

شکل ۵ نمودار فشار داخل محفظه‌ای احتراق ۲۰٪ بیودیزل
در حالت مطلوب باید تمام مقادیر بر روی هم منطق شوند. ولی به دلیل وجود نوسانات جزئی در مقادیر اندازه‌گیری‌هایش و همچنین قبول فرض‌های ساده‌کننده در محاسبات، این اتفاق نمی‌افتد.

۳-۲ پیش‌بینی اهمک رهایی گرما

شکل‌های ۸ تا ۱۲ منحنی‌های اهمک رهایی گرما را نشان می‌دهد. همانطور که مشاهده می‌شود، نتایج خوبی بین مقادیر واقعی و محاسبه شده وجود دارد. این منحنی‌ها دارای دو بخش گشایانه می‌باشند که یک اول مربوط به احترام پیش‌آمده می‌باشد و یک دوم مربوط به احترام نفوذی است. این توجه به این که در الگوی کامپیوتری ارائه شده، از مقادیر واقعی به عنوان شرایط لوله حل روابط استفاده شده است لذا محل وقوع و مقادیر پیشنهاد انتخاب نشانیده می‌باشد. از طرف دیگر، وجود آشفتگی جریان در داخل استوانه، موجب وقوع تغییرات آماری در اطلاعات تجربی شده است.
حرارتی، چگالی و جزم روش یو سوخت و همچنین ساختار مولکولی سوخت و مقدار اکسیژن موجود در آن نیز می‌باشد که هر کام تأثیر می‌پذیرد. یک بیانی بر کمیت قطره شدن و کیفیت احترار سوخت دارد که این اثبات می‌تواند (به نام BDC) مقدار ثابتی می‌باشد و همچنین مقدار با روش آنلیم آزمایش‌ها بر لگام ترمز و دور موتر مقادیر ثابتی دارد.

3-2 یپش بینی حداکثر فشار داخل استوانه

شکل ۱۴ فشار بیشینه داخل استوانه، با برای مخلوط‌های مختلف سوخت بیودیزل نشان می‌دهد. همان‌طور که از نمودار مشخص است، توافق برخی از داده‌های تولیدشده از طریق الگوی کامپیوتری و اطلاعات تجربی وجود دارد که اولای بیان کردی که می‌باشد و در نهایت نباید بر این مدعاسم که با آزمایش بیودیزل در مخلوط سوخت، فشار بیشینه داخل احترام این آنکه با سوخت آفرود بیودیزل BY ۴۰٪ و سپس کاهش می‌یابد.

3-4 یپش بینی دمای خروجی اگزوز

شکل ۱۵ دمای خروجی الکتریک در دسترسی مختلف سوخت بیودیزل در دو حالت واقعی و محاسبه شده نشان می‌دهد. در حالت محاسباتی، دمای داخل محفظه احتراس در حالت بازشدن و بازگشت دو (۱۲۰ درجه میلی‌ثانیه) به عضاء دمای خروجی در نظر گرفته می‌شود. همان‌طور که مشاهده می‌شود مقادیر دمای خروجی در هر دو حالت واقعی و محاسبه‌شده توافق خوبی نسبت به هم دارند. در هر دو حالت با آفرود سهم بیودیزل دمای خروجی کاهش می‌یابد که نشان از احترام مایل‌تر سوخت بیودیزل دارد.

نتایج حاکی از این واقعی است که در احتراس یپش آمیخته، مقدار سوخت محرق شده به این است که با استفاده از اینکه باشد به به عوامل دیگری نظر وسایل، ارزش
در این کار تحقیقاتی از یک گوی تک منطقه‌ای برای پیشگویی فرآیند احراق مخلوط سوخت بیوپلز و کازوئل استفاده گردید. اندازه‌گیری اقدامات احراق-TK و کیفیت احراق Whitehouse-Way توسط کانال سوخت مایع به مقدار سوخت ادعام‌شده برای احراق از دست داد. نتایج زمان محاسبه و رطوبت غیر مغزه شده باعث افزایش دقت نتایج شدند که این دقت تک منطقه‌ای ارائه شده با اینکه بر اساس فرض‌های ساده کننده‌ای بنوان شده است ولي تأثیر سهم بیوپلز موجود در مخلوط سوخت بیوپلز و کازوئل را بر فرآیند احراق با دقت نسبتاً خوبی پیش‌گویی می‌نماید. سوخت بیوپلز حاصل ۱۰% تا ۱۱% جرم اکسیژن است و دارای چالش‌هایی به منظور به‌کارگیری متغیری نسبت به گازوئل می‌باشد که مهم‌ترین عوامل مؤثر بر احراق با رهایی از وسایل شیمیایی سوخت هستند.
Experimental Investigation and Mathematical Modeling of Combustion Using Biodiesel from Restaurant Waste Cooking Oil

B. Najafi*
Assistant Professor- School of Mechanical Engineering
University of Mohaghegh Ardabili
Najafib@uma.ac.ir

Abstract
Biodiesel can be used easily as an alternative fuel in diesel engine and is environmentally friendly. In the present work for prediction of combustion process in a low speed diesel engine (M8/1 Lister), a single-zone combustion model (Whitehouse-Way) was used. This model was verified by experimental data. Predicted values of cylinder pressure and heat release rate from this modeling showed good agreement with corresponding experimental data. Also, the results of the engine short time tests, showed with increasing biodiesel percentage up to 20 volumetric, same properties such as pressure peak in combustion chamber, exhaust engine temperature, ignition delay, engine speed, brake and indicatory efficiency were increased. Due to combustion quality improvement, CO and UHC emissions were decreased, but NOx increased through higher combustion temperature and consequently higher pressure. Brake specific fuel consumption was minimum in compound which is economically very important.

Keywords: Biodiesel, Experimental Test, Mathematical Modeling, Performance Parameters and Emission.