بررسی تجربی و شیبیسازی ریاضی فرآیند احتراق سوخت

بیمار تحفه

استاد راهنما محترم

Najafib@uma.ac.ir

چکیده

پردازش به عنوان سوخت جایگزین گازولین به آسانی قابل استفاده در موتور دیزل است و دوستان همیشه می‌خواهند. در این تحقیق برای پیشگویی فرآیند احتراق مخلوط سوخت پردازش از روانی بسیارهای گازولین در یک موتور دیزل دور باین (لیستر/MA) از یک الگوی تک‌نقطه‌ای و ناپایدار استفاده گردید. ارایه‌های تجربی نیز برای مقایسه می‌بایست. بر اساس سنت کواتسی مدیا موتور انجام یک راهکار بازیت از پیشگویی یافته‌های تجربی و شیبیسازی ریاضی نشان داد که مقدار پیشگویی، درصد خشکی بازیت مهیج، برای تجربی حاکی از این وجود است که با افزایش 20% پردازش به گازولین مشخصه‌های نئور شیب‌شدن داخل محفظه احتراق خمای خروجی افزور، مهلت استفاده، بازده حرارتی اندیکاکوری و ترمز برای کارایی مناسب موتور افزایش می‌یابد. بدین همراه کیفیت احتراق، انتشار اکسیدهای موتوکسید و هیدروکربن نسبت آهش می‌یابد. ولی مقدار کلیدوواره‌ها: مخلوط پردازش، آزمایش تجربی، شیب‌سازی

فرآیند احتراق عوامل عاملی اعلام و انتشار آن ایتامی

1- مقدمه

پردازش استرشاد متقابل استرشاده‌ای جریب با زنجر طولی است که با تعداد تجدیدپذیر مانند روان‌های گیاهی یا جریب‌های حیوانات تهیه می‌شود و در آزمایش فیزیولوژی کلیه CaCO_3 می‌باشد. به منظور استفاده از این سوخت در موتور‌های احتراق‌داخی، لازم است با بررسی شیب‌برداری شیب‌سازی نشان دهد.
2- آزمایش تحریک

بر یک تحقیقی برای تأیید و بررسی تغییرات در سطح از این موضوع تحقیقاتی توسط محققان در سال 2000 میلادی انجام شد. این آزمایش بر اساس الگوهایی از گاز، برای کنترل و تغییراتی در محیط سنجش شد. هر یک از این مطالعات مربوط به بخار تصفیه کننده مربوط به تغییرات در شرایط مختلفی از سوخت، بخار نیتروژن و بوتانول را با استفاده از ارائه منابع تغییر در سطح مطلوب قرار دادند. در این مطالعات، از سوخت یونیک در ایران استفاده گردید.

2- مواد و روش‌ها

2-1 سوخت یونیک

سوخت یونیک استفاده شده در این مطالعه به‌صورت موجود در استاندارد ASTM-D4756 استفاده گردید. این مطالعات با استفاده از مدل GC MSS آن‌ها شروع شد که با استفاده از مدل ASTM-D4756 استفاده گردید.

2-2 شیب‌سازی‌های استاندارد

این مطالعات به‌صورت بررسی‌های انجام شدند با استفاده از مدل‌هایی از سوخت و بوتانول و HRWU که در استاندارد ASTM-D1237 استفاده گردید. به‌طور کلی، استفاده از این مدل‌ها با استفاده از مدل‌های استاندارد ASTM-D4756 به‌طور کلی به‌طور مداوم استفاده گردید.

2-3 خواص سوخت یونیک

خواص سوخت یونیک در این تحقیق به‌صورت مداوم بررسی شد. به‌طور کلی، سوخت یونیک با استفاده از الگوهایی از گاز، برای کنترل و تغییراتی در محیط سنجش شد. هر یک از این مطالعات مربوط به بخار تصفیه کننده مربوط به تغییرات در شرایط مختلفی از سوخت، بخار نیتروژن و بوتانول را با استفاده از ارائه منابع تغییر در سطح مطلوب قرار دادند. در این مطالعات، از سوخت یونیک در ایران استفاده گردید.

جدول 1:
خواص سوخت یونیک استفاده شده در این تحقیق

<table>
<thead>
<tr>
<th>خصوصیت</th>
<th>واحد</th>
<th>محدوده</th>
</tr>
</thead>
<tbody>
<tr>
<td>محصول</td>
<td>الگوی گازولین</td>
<td>گازولین استاندارد</td>
</tr>
<tr>
<td>داشته‌شده</td>
<td>نتیجه</td>
<td>مدل</td>
</tr>
<tr>
<td>A.</td>
<td>گازولین</td>
<td>ASTM</td>
</tr>
<tr>
<td>B.</td>
<td>الگوی گازولین</td>
<td>ASTM-D4756</td>
</tr>
</tbody>
</table>

فهرست

Whitehouse-Way - 2

Fisher - 1

Downloaded from engineresearch.ir at 2:53 +0430 on Thursday July 30th 2020
2-1 استادی (IDI)؛ از نوع پاکشی غیر مستقیم است. باید ساده‌سازی گاز، فشار و بار داخل محیط احتراق اصلی و محیط بیش از دسترس بی‌پایی یا پایداری و همگی فرضی می‌شود. بنابراین قانون اول گازوپراپایی به شکل ماده (2) جمله می‌شود:

\[dE + dW + dq - dm = 0 \]

(5)

\[q = \frac{dQ}{dt} \]

(3) حالت بازیابی و دو بازیابی غازوپراپایی، باید ساده‌سازی بی‌پایی و بار داخل محیط احتراق اصلی و محیط بیش از دسترس بی‌پایی یا پایداری و همگی فرضی می‌شود. بنابراین قانون اول گازوپراپایی به شکل ماده (2) جمله می‌شود:

\[A_t \propto n_t \left(\frac{M_{\text{fuel}}}{n} \right)^{\frac{2}{5}} \times n_t^{\frac{2}{5}} M_{\text{fuel}}^{\frac{2}{5}} \]

(1)

\[A_t \propto M_{\text{fuel}}^{\frac{2}{5}} \]

(2)

\[M_{\text{fuel}}^{\frac{2}{5}} M_{\text{air}}^{\frac{3}{5}} P_{\text{fuel}}^{\frac{1}{5}} \]

(3)

\[\text{FPR} = k \times M_{\text{fuel}}^{\frac{1}{5}} \times M_{\text{air}}^{\frac{3}{5}} \times P_{\text{fuel}}^{\frac{1}{5}} \]

(4)

\[\frac{\text{FPR} - \text{FRR}}{T} \times \text{Exp} \left(-\frac{\text{FPR} - \text{FRR}}{T} \right) \]

(5)

\[\text{FRR} = k' \times \frac{P_0}{N_{\text{conv}}} \times \sqrt{T} \times \text{Exp} \left(-\frac{E_{\text{act}}}{T} \right) \times \text{FPR} - \text{FRR} \]

(6)

\[\text{FRR} = k' \times \frac{P_0}{N_{\text{conv}}} \times \sqrt{T} \times \text{Exp} \left(-\frac{E_{\text{act}}}{T} \right) \times \text{FPR} - \text{FRR} \]

(7)
\[
\begin{align*}
U(T) &= R \left(U_{ij}^2 T^2 + \frac{U_{ij}^3 T^3}{2} + \frac{U_{ij}^4 T^4}{4} - T \right) \\
&= U_{ij}^2 T^2 + \frac{U_{ij}^3 T^3}{2} + \frac{U_{ij}^4 T^4}{4} - T
\end{align*}
\] (17)

(که زیرنویسی زمان‌دهنده گونه‌ها نرگسیزی $	heta < 1$, مخلوط‌های قیمتی کمی کننده و همان‌طور مقداری از ترکیبی به یکدیازی (57.75B + 20.5(1/\phi - 1) \times dM)\) مول در واکنش شرکت نمایند که در محصولات احتراف بالایی می‌دانم. بنا برای تعداد کل مول‌های احتراف مخلوط سوخت پیدا و کاروانی در زمان t_1 (ابتدای کام زمانی) برابر است با:

\[
b_{CO} + b_{H_2O} + b_{O_2} + b_{N_2} + b_{FB}
\]

همچنین تعداد مول‌های پار استوانه در انتهای کام زمانی برابر است با:

\[
t_2 = t_1 + \Delta t
\]

ترکب وابسته به پارامترات پیش‌بینی می‌باشد. برابر خواهد بود با:

\[
\begin{align*}
a_{CO} + a_{H_2O} + a_{O_2} + a_{N_2} + a_{FB} \\
a_{CO} &= b_{CO} + (3B + 16) \times dM_{FB} \\
a_{H_2O} &= b_{H_2O} + (37.5B + 20) \times dM_{FB} \\
a_{O_2} &= b_{O_2} + (57.7B + 20) \times dM_{FB} \\
a_{N_2} &= b_{N_2}
\end{align*}
\] (18)

\[
\begin{align*}
V(\theta) &= V_C + \frac{\pi D^2}{4} \\
&= \left[L + R \left(\frac{(\cos(\theta)) - \sqrt{L^2 - R^2 \sin^2(\theta)}}{\sin(\theta)} \right) \right]
\end{align*}
\] (19)

در معادله فوق $V(\theta)$ مول استوانه، D مربع سریع، R قطر استوانه، L طول دسته سوخت و θ شعاع نتیجه درجه میلک. V_C حجم فضای مرده نیز از روی حجم جایگاه شده با سبیل واگذاری و نسبت تراکم $V_d = (\pi/4)D^2 S$ از معادله $V_d = (\pi/4)D^2 S$ محاسبه می‌شود.

\[
\begin{align*}
Piston &- 1
\end{align*}
\]
در این معادله T_e دما متوسط گازهای داخل محیطه احتمال در دو کام زمانی و برای $k+2$ نیز مقدار ثابت درد
است که فرض می‌شود در حال کاری ثابت مودول، مقدار ثابت درد سلسله تبادل حرارت k بین گازهای داخل محیطه احتمال و دیوارها,
تأثیر از موقعیت سطح است و در نتیجه به صورت تابعی از زاویه می‌باشد.

محاسبه می‌باشد:

$As(\theta) = A_w + A_h + A_p = $

\[
\left\{ \begin{array}{l}
\frac{V_c}{(D/4)} + \pi d (L + a(1 - \cos(\theta))) \\
- \sqrt{L^2 - a^2 \sin^2(\theta)} + 2 \frac{\pi d^2}{4}
\end{array} \right.
\] (32)

همچنین در برابر حذای گازهای داخل استانه می‌باشد که با فرض عدد یوتلی N_T, برای مخاطب داخل استانه، از معادله
K_e به دست می‌آید.

$K_e = C_p_c p/b_m$.

محیطه احتمالی یافت می‌باشد مقادیر c و b_m تجربی هستند و $b=2.75 + 0.25$, $a=0.26$.

$C_p = (3.88 \pm 0.39) \times 10^8$

در نتیجه برای محاسبه نرخ تبادل حرارت براساس تغییرات زاویه می‌باشد،

$\frac{dQ}{dt} = (dQ/dt) \times (d\theta/360 N_{RPS})$

محاسبه می‌باشد

برای محاسبه نرخ حرارت می‌خواهد

$\bar{V}_o = C_d \sqrt{\frac{(P_{inj} - P)}{\rho_f}}$

به ترتیب فشار متوسط داخل استانه و فشار پاشش P_{inj} و P که

انقلای حرارت به صورت معادله (31) محاسبه می‌گردد:

$\frac{dQ}{dt} = As \left(aK_e D \frac{Re^b}{D} \left(T_e - T_w \right) + c(T_e^4 - T_w^4) \right)$ (37)

Annand - 1

فقط با توجه به تفاضلات موتراسال نیپ نمایه، از طرفی

$Nu = \alpha Re^b$

برای گازهای داخل محیطه احتمال، با استفاده از عدد

$\text{Nu} = \alpha Re^b$

برای میزان تبادل حرارت کلی به صورت معادله (31) محاسبه می‌باشد.
\[
\theta_{\text{physical,ad}} = C_{\text{chemical,ad}} \cdot N_{\text{RPSF}} \cdot P^a \cdot \exp \left(\frac{E_g}{RT} \right)
\]

\[
dm = \frac{\pi \cdot d^2}{4} \cdot V_0 \cdot \rho_F \cdot \text{HNN}
\]

\[
\theta_{\text{chemical,ad}} = C_{\text{chemical,ad}} \cdot N_{\text{RPSF}} \cdot P^a \cdot \exp \left(\frac{E_g}{RT} \right)
\]

\[
\theta_{\text{physical,ad}} = \frac{a_{\text{ad}} \cdot A_{\text{max}} \cdot P_F}{C_{\text{physical,ad}} \cdot \sqrt{\rho_F \cdot \text{ad} \cdot (P_0 - P)}}
\]

\[
\frac{dm}{dt} = \frac{\pi \cdot d^2}{4} \cdot V_0 \cdot \rho_F \cdot \text{HNN}
\]

\[
\frac{dm}{dt} = \frac{\pi \cdot d^2}{4} \cdot V_0 \cdot \rho_F \cdot \text{HNN}
\]
سوم مجموع سوخت محرق شده می‌باشد. بنابراین، در طی این مرحله، جرم سوخت محترق شده تحت تأثیر آهنگ واکنش سوم مورد بررسی قرار گرفته و در نتیجه اخبارات محترق شده‌ای که جرم سوخت محترق شده در طی کمیابی‌سازی قرار دارند و برابر است با:

$$FMB = dFRR \times \Delta \theta$$

(49)

و اگر در طول جریان کاری موتور، بکار شرط صادق (f(TFR)) > (f(TFP)) باشد، سوم محاسبه‌ی آهنگ واکنشی کافی در محفظت احترام موجود نیست و جرم سوخت محترق شده تحت تأثیر آهنگ آدامس‌سازی قرار دارد و برابر است با:

$$FMB = dFPFR \times \Delta \theta$$

(50)

در نتیجه آهنگ آدامس‌سازی در طول کام عبارت است از:

$$M_{n} = (TFR)_{n} - (TFP)_{n-1}$$

(33)

و کل جرم سوخت محترق شده تا انتهای کام n ام عبارت است از:

$$f(TFR)_{n} = (TFR)_{n-1} \times (dFPFR) R_{\phi} \Delta \theta$$

(55)

برای محاسبه‌ی مقدار سوخت محترق شده در طول این کام از معادله (4) استفاده می‌شود که در آن:

$$FPR - FRR \times d\theta = (TFF)_{n} - (TFR)_{n-1}$$

(36)

بنابراین آهنگ واکنش در طول این کام عبارت است از:

$$\left[\begin{array}{l}
\frac{dFRR}{\theta} = \frac{K_{b} P_{i}}{N_{FPR} \sqrt{T_{i-1}}} \\
\text{Exp}\left\{\frac{E_{n}}{T_{i-1}}\right\}
\end{array}\right]$$

(37)

و کل جرم سوخت محترق شده تا انتهای این کام عبارت است از:

$$FPR - FRR \times d\theta = (TFR)_{n} - (dFRR)_{n-1}$$

(38)

مطابق با الگوی Whitehouse-Way در ابتدای دوره احترام مجموع
3- بحث بر روی نتایج
الگوی ارائه شده در این تحقیق، فاصله پیشرفت عوامل عملکرد موتور برای تشخیص نوع مخلوط سوختن موجود آزمایش دارد.

3-1- پیشرفت داخل استوانه
شکل‌های 2 تا 7 ممکن‌هایی (P_θ) حاصل از الگوی کامپیوتری و نتایج آزمایش‌های تجربی را برای مخلوط‌های مختلف سوخت بیودیزل در بار 28/42 بار نهایی دیناموتر (78 نیوتن-متر) و دور موتور 74 دور بر دقیقه، نشان می‌دهد. در این مبتنی‌ها نقشه پیک فشار برای هر دو حالت پیشرفت شده و اندازه‌گیری شده، دقتاً بر چهار منطقه است. همچنین محل وقوع احترار پیش آمیخته (در انتهای دوره مدت اشعال) نیز به‌خوبی در همین منطقه مشاهده می‌شود.
در حالت مطلوب باید تمام مقادیر بر روی هم منطق شوند. ولی به دلیل وجود نوسانات جزئی در مقادیر اندازه‌گیری شده و همچنین فاصله زمانی ساده‌کننده در محاسبات، این اتفاق نمی‌افتد.

3-2 پیشینه آهنگ رهایی گرما

شکل‌های 9 تا 12 نشان‌دهنده آهنگ رهایی گرما را نشان می‌دهند. تغییرات محلول در دارایی‌های بین مقادیر واقعی و محاسبه‌شده وجود دارد. این مقدارها در دو بیک احراز می‌باشد که بیک اول مربوط به احراز پیش‌آمده و بیک دوم مربوط به احراز نفوذی است. با توجه به این که در الگوی کامپیوتری ارائه شده، از مقادیر واقعی به عنوان شرایط لوله جریان استفاده شد و به موجب مقادیر احراز نفوذی مشابه می‌باشد. از طرف دیگر، وجود این اتفاقی در داخل استوانه، موجب افزایش تغییرات آماری در اطلاعات تجربی شده است.
حرارتی چگالی و دما در سوخت و همچنین ساختار مولکولی سوخت و مقدار اکسیژن موجود در آن از نظر یاد که هر کدام تأثیر مثبت یا منفی بر کیفیت قطره داشته و مقدار احتراق سوخت دارد، مثلاً و فشار در انتهای مرحله ترکم (در نقطه BDC)، مقدار ثابتی می‌باشد و همچنین متقابل با روش انجام آزمایش‌ها، بار لگام ترمز و دور موتور مقادیر ثابتی دارد.

شکل ۱۱ - پیش‌بینی حداقل فشار داخل استوانه

شکل ۱۲ - پیش‌بینی دما در انتهای آزمایش

نتایج حاکی از این واقعیت است که در احتراق پیش‌آمیخته، مقدار سوخت محرق در شده‌نشدن‌ها و استزان به دو درجه منفی است، این امر به جلوگیری از افزایش دما و بهبود کارکرد موتوری است.

شکل ۱۳ - پیش‌بینی دما در انتهای آزمایش

شکل ۱۴ - پیش‌بینی دما در انتهای آزمایش

شکل ۱۵ - پیش‌بینی دما در انتهای آزمایش
Reference:
5- ASTM. Standard specification for biodiesel fuel-blend stock (B100) for distillate fuels. ASTM D6751-02. 2002
Experimental Investigation and Mathematical Modeling of Combustion Using Biodiesel from Restaurant Waste Cooking Oil

B. Najafi*
Assistant Professor- School of Mechanical Engineering
University of Mohaghegh Ardabili
Najafib@uma.ac.ir

Abstract
Biodiesel can be used easily as an alternative fuel in diesel engine and is environmentally friendly. In the present work for prediction of combustion process in a low speed diesel engine (M8/1 Lister), a single-zone combustion model (Whitehouse-Way) was used. This model was verified by experimental data. Predicted values of cylinder pressure and heat release rate from this modeling showed good agreement with corresponding experimental data. Also, the results of the engine short time tests, showed with increasing biodiesel percentage up to 20 volumetric, same properties such as pressure peak in combustion chamber, exhaust engine temperature, ignition delay, engine speed, brake and indicatory efficiency were increased. Due to combustion quality improvement, CO and UHC emissions were decreased, but NOx increased through higher combustion temperature and consequently higher pressure. Brake specific fuel consumption was minimum in compound which is economically very important.

Keywords: Biodiesel, Experimental Test, Mathematical Modeling, Performance Parameters and Emission.