مطالعه تأثیر شرایط مرزی حرارتی گازهای داخل محفظه احتراق و مجاری آب خنک کاری بر توزیع دماي بستار موتور دیزل سنگین

حمیدرا جمی
رئیس گروه تحقیق، دکتری و وتسه دیزل سنگین (دی‌سی)
h.chamani@gmail.com

دکتر ابراهیم ساتاری فر
استادیار دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر
sattarifar@aut.ac.ir

دکتر محمدرضا اقدم
دانشیار دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر
aghdam@aut.ac.ir

چکیده
پستار یکی از قطعات اصلی موتور دیزل می‌باشد که در معرض برگزاری‌های مختلف حرارتی، و مکانیکی قرار دارد. یکی از اهداف در طراحی بستار، طراحی با دوام و حصول عمل طولانی تر خستگی می‌باشد. ممکن است بستار، با گذشت از دوره‌های تجارب اول‌رتبه‌بندی‌ها و پیش‌بینی‌های هوا نباشد. البته، برای هر بستار، این آمار معنایی و مثبت در پایان و تولید آزمایش‌های انجام شود. البته، برای هر بستار، این آمار معنایی و مثبت در پایان و تولید آزمایش‌های انجام شود.

کلیدواژه‌ها: بستار موتور دیزل سنگین، تحلیل حرارتی، شرایط مرزی حرارتی

1- مقدمه
تنش‌های حرارتی در بستار، تنش‌های غالب و حاکم می‌باشد که منجر به ایجاد خستگی کم‌درجه و همچنین تنش‌های میانگین در خستگی کم‌درجه بستار می‌شود. در اینجا، می‌توان واگر بستار حرارتی مهارتی با ساختاری تازه‌تر و هر چه توزیع کمتر دما در بستار تلقیش داشته، تنظیم‌هایی احتمالی از آن در نقاط

71
طراحی و تولید یک دستگاه حرفه‌ای برای تحلیل جریان نشان داده شده است. سمت بالایی، مساحت مرجع دیزل سیستم ۱ و ۲ را نشان می‌دهد.

<table>
<thead>
<tr>
<th>مشخصات</th>
<th>موتر ۱</th>
<th>موتر ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>قطر استوانه</td>
<td>۲۱۵</td>
<td>۱۸۵</td>
</tr>
<tr>
<td>طول پیمایش مجهز</td>
<td>۱۷۵</td>
<td>۱۸۵</td>
</tr>
<tr>
<td>عداد استوانه</td>
<td>۱۵</td>
<td>۱۳</td>
</tr>
<tr>
<td>توان نمایه</td>
<td>۱۲۰۰</td>
<td>۱۱۵۰</td>
</tr>
<tr>
<td>دور موتور</td>
<td>۲۰۰۰</td>
<td>۱۹۰۰</td>
</tr>
<tr>
<td>فشار موتور مانگک</td>
<td>۴۱</td>
<td>۱۹</td>
</tr>
<tr>
<td>جنس پستار</td>
<td>چند شکن</td>
<td>چند شکن</td>
</tr>
</tbody>
</table>

1. عکس‌برداری مجموعه پستار برای تحلیل جریان موتور-بی‌سی‌سی
2. میزان مشخصات عمومی موتور‌های دیزل سیستم ۱ و ۲.

سیستم‌های خودکار و تکنیک‌ها در تولید، مهارت‌های و تجربیات حرفه‌ای را ارائه می‌دهند.

شکل ۱: مجموعه پستار برای تحلیل جریان موتور-بی‌سی‌سی

۱. بی‌سی‌سی

دانش‌آموزان محترم، مانند شما، به‌طور گسترده‌ای در زمینه تحقیقات و توانمندی‌های علمی و فناوری شرکت می‌کنند. توجه به فردی که یک دستگاه حرفه‌ای برای تحلیل جریان نشان داده شده است. سمت بالایی، مساحت مرجع دیزل سیستم ۱ و ۲ را نشان می‌دهد.

<table>
<thead>
<tr>
<th>مشخصات</th>
<th>موتر ۱</th>
<th>موتر ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>قطر استوانه</td>
<td>۲۱۵</td>
<td>۱۸۵</td>
</tr>
<tr>
<td>طول پیمایش مجهز</td>
<td>۱۷۵</td>
<td>۱۸۵</td>
</tr>
<tr>
<td>عداد استوانه</td>
<td>۱۵</td>
<td>۱۳</td>
</tr>
<tr>
<td>توان نمایه</td>
<td>۱۲۰۰</td>
<td>۱۱۵۰</td>
</tr>
<tr>
<td>دور موتور</td>
<td>۲۰۰۰</td>
<td>۱۹۰۰</td>
</tr>
<tr>
<td>فشار موتور مانگک</td>
<td>۴۱</td>
<td>۱۹</td>
</tr>
<tr>
<td>جنس پستار</td>
<td>چند شکن</td>
<td>چند شکن</td>
</tr>
</tbody>
</table>

1. عکس‌برداری مجموعه پستار برای تحلیل جریان موتور-بی‌سی‌سی
2. میزان مشخصات عمومی موتور‌های دیزل سیستم ۱ و ۲.

سیستم‌های خودکار و تکنیک‌ها در تولید، مهارت‌های و تجربیات حرفه‌ای را ارائه می‌دهند.

شکل ۱: مجموعه پستار برای تحلیل جریان موتور-بی‌سی‌سی

۱. بی‌سی‌سی

دانش‌آموزان محترم، مانند شما، به‌طور گسترده‌ای در زمینه تحقیقات و توانمندی‌های علمی و فناوری شرکت می‌کنند.
برای تحلیل دینامیک سیالات سببی‌دیده مجازی حفظ کاری بستار از ANSYS CFX-11.0 و برای تحلیل حرارتی مجموعه ANSYS Workbench-11.0 استفاده گردیده است. در شکل‌های (3) و (5) به ترتیب خطوط جریان در مجازی حفظ کاری بستار موتور 1 و 3 نمایش داده شده است که سياسي اکثریت جریان؛ با بررسی دقیق انتقال حرارت از مجازی حفظ کاری با دوباره بستار، پیده جوشش آب دور بررسی شود و در محاسبات ضریب انتقال حرارت از تحقیق precios. جغرافیایی و همکارانش (7) روشن سریع از ای با تحلیل می‌توان دینامیک سیالات محسوبی و دچار حرارت انتقال حرارتی لحاظ کرد. جغرافیایی و همکارانش (7) نیز در نظر گرفته می‌شود در روش فوق، انتقال حرارت در اثر جوشش آب با استفاده از روش عزیمت حباب (8) محاسبه می‌گردد. این مقاله، از روش یاد به برای تحلیل مزود دینامیک سیالات سببی‌دیده مجازی حفظ کاری بستار و تحلیل حرارتی مجموعه بستار استفاده شده است. در آن روش، شار جرحتی به صورت تکمیل از شار حرارتی ناشی از انتقال حرارت بین جابجایی اجباری و جوشش جریان در نظر گرفته می‌شود.

این برای حفظ سیال اجباری در محیط مایع در حالت جوشش عمیقاً، می‌توان به صورت معادله (3) بیان نمود.

\[q_v = \phi h_f(T_w - T_{bulk}) + Sh_{ab}(T_w - T_s) \] \hspace{1cm} (4)

که در آن \(S \) و \(\theta \) ضریب انتقال حرارت گاجانی اجباری می‌باشد که از تحلیل دینامیک سیالات سببی‌دیده جریان محاسبه می‌شود و با یک ضریب اتصال می‌گردد. \(h_{ab} \) ضریب انتقال حرارت جوشش، نرمال دیووره، \(T_w \) دمای دیووره، \(T_s \) دمای یخ‌برای اشاعه در فضای جریان سیال و \(T_{bulk} \) دمای حجمی سیال است، بر طبق معادله زیر (10) ضریب انتقال حرارت جوشش در حالت جوشش عمیقاً برای استفاده است:

\[h_{ab} = 0.00122 \frac{k_{bulk} T}{\rho c_p T_{bulk}^{1/2} \Delta T_{bulk}^{3/2}} \] \hspace{1cm} (5)

استنبات (8) روشن عزیمت حباب را برای محاسبه ضریب اتصال یکشته داده است که در آن میزان مختلف شکل جریان، رشد آن، لغزش حباب بر روی سطح و در نهایت جدا شدن حباب از سطح شیب‌رسایی می‌شود. در این درگاه اثر حرکت حباب بر انتقال حرارت با استفاده از ضریب اتصال \(S_{wav} \) لحاظ شده است. تأثیر جریان مادون سرد نیز با استفاده از ضریب اتصال \(S_{wav} \) برای محاسبه می‌گردد.

\[S = S_{wav}S_{wav} \quad q_v = q_{ab} + q_{ab}S_{wav} \] \hspace{1cm} (6)

سفالسازی پژوهشی تحقیقات موتور سال بنیان انگارها از همین اولین دفعه 1368
در شکل های (۸) و (۹) به ترتیب توزیع دما در مجموعه بستار برای موتر ۱ و موتر ۲ نشان داده شده است. نتایج حاکی از آن است که دمای بیشینه بستار در محل پل بین دریچه‌ها رخ می‌دهد. در موتر ۱ نشیمنگاه دریچه‌ها دارای مسیر ابکرد نیم‌پاش ولی در موتر ۲ نشیمنگاه دریچه‌های دود به وسیله مسیر ابکرد خنک کاری می‌شود. لذا دمای بین دریچه‌ها در موتر ۲ کمتر از دریچه‌های دود می‌باشد.

مدل‌سازی انتقال حرارت جابجای مولکول در محیط خنک‌کاری بستار برای موتر ۱

\[h = \frac{K \rho \Delta T}{B} \] ۱۱۱

که در آن \(h \) ضریب انتقال حرارت هندیا در سطوح تمامی ضریب هیدوای حرارتی مواد در تمامی با یکدیگر \(K \) \(W/m^2 \cdot ^\circ C \) \(\rho \) \(W/m^3 \cdot ^\circ C \) قرار می‌گیرد. \(P \) نشینگاه دریچه‌ها. \(B \) سختی بریتان مواد در تمامی با یکدیگر (MPa) در سطح تمامی نشینگاه، مقادیر محاسبه شده از معادله (۱) با مقادیر اندازه‌گیری شده در مرحله (۱۲) مقایسه شده است که تابی

به یکدیگر می‌باشد و گواه بر صحته معادله (۶) می‌باشد.

\[\text{شکل ۷} \]

به ترتیب توزیع دما در بستار موتر ۱

\[\text{شکل ۹} \]

به ترتیب توزیع دما در بستار موتر ۲

\[\text{شکل ۸} \]

به ترتیب توزیع دما در بستار موتر ۱

\[\text{شکل ۶} \]

به ترتیب توزیع دما در بستار موتر ۱

\[\text{شکل ۵} \]

به ترتیب توزیع دما در بستار موتر ۱

\[\text{شکل ۴} \]

به ترتیب توزیع دما در بستار موتر ۱

\[\text{شکل ۳} \]

به ترتیب توزیع دما در بستار موتر ۱

\[\text{شکل ۲} \]

به ترتیب توزیع دما در بستار موتر ۱

\[\text{شکل ۱} \]

به ترتیب توزیع دما در بستار موتر ۱
گونه‌کاهی که دریچه‌ها را تقریباً احاطه‌نموده و همان‌طور که در شکل (۴) مشاهده می‌گردد جریان آب پس از خک درند اطراف آستین‌مرکزی سطح‌های خشک‌کاری این سطوح با پس‌باز میرد. در این شکل (۴) سطح دو نوار مختلف با داشته به‌طور کلی از طرف میانگین تامین می‌گردد. در این شکل (۴) سطح دو نوار مختلف با داشته به‌طور کلی از طرف میانگین تامین می‌گردد. در این شکل (۴) سطح دو نوار مختلف با داشته به‌طور کلی از طرف میانگین تامین می‌گردد.

1. سطوح دو نوار مختلف با داشته به‌طور کلی از طرف میانگین تامین می‌گردد.
2. سطوح دو نوار مختلف با داشته به‌طور کلی از طرف میانگین تامین می‌گردد.
3. سطوح دو نوار مختلف با داشته به‌طور کلی از طرف میانگین تامین می‌گردد.
4. سطوح دو نوار مختلف با داشته به‌طور کلی از طرف میانگین تامین می‌گردد.

شکل (۴) جریان آب پس از خک درند اطراف آستین‌مرکزی سطح‌های خشک‌کاری این سطوح با پس‌باز میرد.

برای انتقال حرارت با دمای پل از دریچه‌ها به سطح با دمای پل از دریچه‌ها، نیاز به شرایط مناسبی به‌وجود می‌آید. این شرایط از طرف میانگین تامین می‌گردد. در این شکل (۴) سطح دو نوار مختلف با داشته به‌طور کلی از طرف میانگین تامین می‌گردد.

شکل (۴) جریان آب پس از خک درند اطراف آستین‌مرکزی سطح‌های خشک‌کاری این سطوح با پس‌باز میرد.

برای انتقال حرارت با دمای پل از دریچه‌ها به سطح با دمای پل از دریچه‌ها، نیاز به شرایط مناسبی به‌وجود می‌آید. این شرایط از طرف میانگین تامین می‌گردد. در این شکل (۴) سطح دو نوار مختلف با داشته به‌طور کلی از طرف میانگین تامین می‌گردد.
که مشاهده می‌شود اثر مقدار ضریب انتقال حرارت به صورت موسمی می‌باشد و تماشای گرافیک حرارتی از سوخت افشانه سوخت تا بل بین دریچه‌ها نمایانگر است.

شکل 12: ضریب انتقال حرارتی بین دو سطح مایع در داخل حرارتی در داخل دود و هوا در دمای 30°C.

شکل 13: ضریب انتقال حرارتی بین دو سطح مایع در داخل حرارتی در داخل دود و هوا در دمای 30°C.

شکل 14: ضریب انتقال حرارتی بین دو سطح بیرونی در داخل حرارتی در داخل دود و هوا در دمای 30°C.
همانند با بقیه شیمی‌بدن‌های استفاده شده، نسبت توزیع دما در هر دو جنس نشان دهنده دقت کافی بوجود داشته است.

درباره نتایج: نتایج نشان می‌دهد که در هر دو جنس، توزیع دما در دو جنس چند نشکن در حدود 18 می‌باشد.

کلیه اطلاعات در لیست ورقه‌ای موتورسال بررسی شده برای حرارت، حرارتی بستار با هندسه ساده، بستار نمونه، حرارتی بستار با اندازه‌گیری حرارتی بستار در اثر تغییرات شیاری مجزای حرارتی می‌باشد. بستار نمونه، همانند با بقیه سایر مدل‌های کاربردی شیمی‌بدن‌های استفاده شده در شکل (16) گروه مورد نظر، با بازده 90% و 90% حرارتی (Solid) برای شیمی‌بدنی استفاده شده است. تقویت توزیع دما در سطح جداگانه دور و بازار، یکی از عناصر ساده و دو جنس چند نشکن و جنس نشکن در حدود 18 می‌باشد. در شکل (17) بستار در جنس چند نشکن در حدود 18 می‌باشد.
همانطور که در شکل (۲۷) ملاحظه می‌گردد، اثر ضریب انتقال حرارت در سطح تماس بین نیشی‌سکه درجه با استقرار بر توزیع دمای بستر ناچیز می‌باشد.

در شکل‌های (۲۸) و (۲۹) به ترتیب اثر ضریب انتقال حرارت در مجاوری‌های باریک کاری، نیشی‌سکه و فصل انباری باریک‌کاری کاری در نظر گرفته شده‌اند. در این شکل‌ها، توزیع دمای بستر در سطح تماس بین نیشی‌سکه درجه با استقرار بر دمای بستر ناچیز می‌باشد. همچنین در شکل‌های (۲۹) و (۳۰) به ترتیب اثر ضریب انتقال حرارت در سطح تماس بین نیشی‌سکه درجه با استقرار بر دمای بستر ناچیز می‌باشد.

در شکل‌های (۲۷) و (۲۸) به ترتیب اثر ضریب انتقال حرارت در مجاوری‌های باریک کاری، نیشی‌سکه و فصل انباری باریک‌کاری کاری در نظر گرفته شده‌اند. در این شکل‌ها، توزیع دمای بستر در سطح تماس بین نیشی‌سکه درجه با استقرار بر دمای بستر ناچیز می‌باشد. همچنین در شکل‌های (۲۹) و (۳۰) به ترتیب اثر ضریب انتقال حرارت در سطح تماس بین نیشی‌سکه درجه با استقرار بر دمای بستر ناچیز می‌باشد.

در شکل‌های (۲۷) و (۲۸) به ترتیب اثر ضریب انتقال حرارت در مجاوری‌های باریک کاری، نیشی‌سکه و فصل انباری باریک‌کاری کاری در نظر گرفته شده‌اند. در این شکل‌ها، توزیع دمای بستر در سطح تماس بین نیشی‌سکه درجه با استقرار بر دمای بستر ناچیز می‌باشد. همچنین در شکل‌های (۲۹) و (۳۰) به ترتیب اثر ضریب انتقال حرارت در سطح تماس بین نیشی‌سکه درجه با استقرار بر دمای بستر ناچیز می‌باشد.

در شکل‌های (۲۷) و (۲۸) به ترتیب اثر ضریب انتقال حرارت در مجاوری‌های باریک کاری، نیشی‌سکه و فصل انباری باریک‌کاری کاری در نظر گرفته شده‌اند. در این شکل‌ها، توزیع دمای بستر در سطح تماس بین نیشی‌سکه درجه با استقرار بر دمای بستر ناچیز می‌باشد. همچنین در شکل‌های (۲۹) و (۳۰) به ترتیب اثر ضریب انتقال حرارت در سطح تماس بین نیشی‌سکه درجه با استقرار بر دمای بستر ناچیز می‌باشد.

در شکل‌های (۲۷) و (۲۸) به ترتیب اثر ضریب انتقال حرارت در مجاوری‌های باریک کاری، نیشی‌سکه و فصل انباری باریک‌کاری کاری در نظر گرفته شده‌اند. در این شکل‌ها، توزیع دمای بستر در سطح تماس بین نیشی‌سکه درجه با استقرار بر دمای بستر ناچیز می‌باشد. همچنین در شکل‌های (۲۹) و (۳۰) به ترتیب اثر ضریب انتقال حرارت در سطح تماس بین نیشی‌سکه درجه با استقرار بر دمای بستر ناچیز می‌باشد.
سنگ‌آمیزی‌های گازهای داخل محیط اطراف و ابعاد آب شکن‌هایی بر توسعه بستنی‌های انرژی دیزل سکین

6- نمادها

سختی بین‌مول
قطر هیدروالک
ضریب انتقال حرارت
ضریب هدایت حرارتی
فسازی تمام
ضرایب حرارتی
عدد ریلن
دما
چگالی محدود
ضرایب اصلاح

7- زیرنویس‌ها

ب، د، اک، دای
جایگاه اجباری
حالات مناسب
حالات گاز
جوش ی هسته ای
حالات (بخشی) اشباع
دیواره

B
D
h
K
p
q
Re
T
ρ

\(a, S_{\text{flow}}, S_{\text{sub}} \)

fc
l

g
nb
s
w

5- نتیجه‌گیری

تأثیر شرایط مزری حرارتی بر توسعه دما و غرادان حرارتی بستنی موتوئر
دزد سکین از جنرال کاسکوری و شکست و چراغ قرار گرفت.
همچنین میزان اختلاف توسعه دما بستار در تحلیل حرارتی با استفاده از
فرشی‌های ساده محاسباتی با حالت دقیقه مزدوج حرارتی-سیالاتی بستار
یک‌تیم گردید با استفاده از محاسبات شرایط مزری با در نظر گرفتن
هزینج مزای آب در مجاور خنک کردن. می‌توان به نتایج قابل
قبولی برای حرارتی مفهومی بستنی دست داشت. تأثیر افزایش دما گاز بر
دامای سقف بستار به ایجاد هم‌اکنون دما متوسط گازهای اطراف
تقریباً دربر برای تأثیر افزایش ضریب انتقال حرارت گازهای اطراف می‌باشد.
همچنین شرایط مزری حرارتی از دیدگاه دما یل قبل دریچه‌ها در بستار،
دامای میان‌گین گازهای داخل استوانه است.

Reference:
Study of Effects of Combustion Gases and Cooling Thermal Boundary Conditions on Temperature Distribution of a Heavy Duty Diesel Engine Cylinder Head

H.R Chamani*
Head of Analysis Team, D87 project
Iran Heavy Diesel Engine Mfg. Co
H.chamani@gmail.com

I. Sattarifar
Assistant Professor
Department of Mechanical Engineering
Amirkabir University of Technology
SattariFar@aut.ac.ir

M. Mohammadi Aghdam
Associate Professor
Department of Mechanical Engineering
Amirkabir University of Technology
aghdam@aut.ac.ir

*Corresponding Authors
Received: May. 29, 2009
Accepted in Revised Form: Nov. 22, 2009

Abstract
Cylinder head is one of the critical components of diesel engine that is subject to different thermal and mechanical loadings. One of the cylinder head design targets is durability and high fatigue life of this part. Thermal loading is the major loading of cylinder head in term of fatigue life assessment because leads to thermal stress and low cycle fatigue. Therefore, the study of the effect of thermal boundary conditions on the temperature distribution of cylinder head will assist cylinder head designer and is necessary part of cylinder head design. In this study, the effects of thermal boundary conditions, due to combustion gases and cooling gallery, at different engine operating conditions on the temperature distribution of a heavy duty diesel engine cylinder head are investigated. Also, the influences of other thermal boundary conditions on the temperature distribution of cylinder head at the critical regions are studied.

Keywords: Diesel Engine Cylinder Head, Thermal Analysis, Thermal Boundary Conditions