تحلیل تجربی اثر استفاده از نانوسیال اکسید آلومینیوم در بهبود انتقال گرمای مبدل موتور XU7

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران

2 گروه مهندسی مکانیک، دانشگاه بناب، بناب، ایران

10.22034/er.2023.2011671.1015

چکیده

در این تحقیق تحلیل تجربی اثر استفاده از نانوسیال اکسید آلومینیوم (Al2O3) در بهبود انتقال گرمای مبدل گرمایی موتور XU7 با تجهیزات کامل سامانه خنک‏‌کاری انجام گرفت. آزمون‏‌ها در سه حالت آب خالص؛ آب و اتیلن گلیکول (60:40) و در نهایت با نانوسیال اکسید آلومینیوم با کسرهای حجمی 1% و 2% و شار‌های 10، 21 و 32 لیتر بر دقیقه، در دو دور کند و تند فن خنک‌کننده انجام شد. نتایج بررسی‌ها نشان داد ازدیاد کسر حجمی نانوذرات به سیال پایه سبب افزایش ضریب انتقال حرارت همرفتی تا شار 21 لیتر بر دقیقه شده و بعدازآن این ضریب کاهش می‌یابد. با اضافه کردن 2% حجمی نانوذرات به سیال پایه در دور تند فن خنک‌کننده به ترتیب برای شار‌های 10، 21 و 32 لیتر بر دقیقه، شاهد افزایش تقریبی 3%، 20% و 16% ضریب انتقال حرارت همرفتی نسبت به سیال پایه هستیم. افت فشار در مبدل با کسر حجمی 1% و 2% نسبت به سیال پایه در شار ثابت 30 لیتر بر دقیقه به ترتیب 22% و 40.8% محاسبه شد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental analysis of the effect of using aluminum oxide nanofluid in improving the heat transfer of XU7 engine radiator

نویسندگان [English]

  • Bahman Rahmatinejad 1
  • Hossein Rahimi Asiabaraki 1
  • Farzin Azimpour Shishevan 1
  • Mohammad Ali Mohtadi Bonab 2
1 Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
2 Department of Mechanical Engineering, University of Bonab, Bonab, Iran
چکیده [English]

In this research, an experimental analysis of the effect of using aluminum oxide nanofluid (Al2O3) in improving the heat transfer of the engine radiator (XU7) with complete cooling system equipment was done. Tests in three pure water conditions; water and ethylene glycol (60:40) and finally with aluminum oxide nanofluid (Al2O3) with volume fractions of 1% and 2% and flow rates of 10, 21, and 32 liters per minute, in two slow and fast cycles. The cooling fan is done. The results showed that increasing the volume fraction of nanoparticles to the base fluid increases the heat transfer coefficient up to a flow rate of 21 liters per minute, and after that this coefficient decreases. By adding 2 percent by volume of nanoparticles to the base fluid at high fan speed, for flow rates of 10, 21, and 32 Lit/min, respectively, we see an approximate increase of 3%, 20%, and 16% in the displacement heat transfer coefficient compared to the base fluid. The pressure drop of the radiator with a volume fraction of 1 and 2% compared to the base fluid at a constant flow rate of 30 liters per minute was calculated as 22% and 40.8%, respectively.

کلیدواژه‌ها [English]

  • Al2O3
  • Nanoparticles
  • Nanofluid
  • Heat Transfer Coefficient
  • XU7 Engine
[1] Giwa SO, Adegoke KA, Sharifpur M, Meyer JP. Research trends in nanofluid and its applications: A bibliometric analysis. Journal of Nanoparticle Research. 2022 Mar;24(3):63. doi: 10.1007/s11051-022-05453-z
[2] Saripella SK, Yu W, Routbort JL, France DM. Effects of nanofluid coolant in a class 8 truck engine. SAE Technical Paper; 2007 Nov 1. doi: 10.4271/2007-01-2141
[3] Rahmatinejad B, Rahimi Asiabaraki H, Azimpour Shishevan F. Investigation of the effect of AL2O3 nanofluid in M13NI engine cooling system. Engine Research. 2023 Mar 21;70(1):47-65. doi: 10.22034/ER.2023.1975318.0 [In Persian]
[4] Kiani H, Ahmadi Nadooshan A. Thermal performance enhancement of automobile radiator using water-CuO nanofluid: an experimental study. Energy Equipment and Systems. 2019 Sep 1;7(3):235-48. doi: 10.22059/EES.2019.36560
[5] Hajabdollahi H, Ghamari V. Experimental study on the use of aluminum oxide and copper oxide nanoparticles to improve the thermal hydraulic performance of Peugeot 206 radiator. Journal of Modeling in Engineering. 2022 Mar 21;20(68):101-12. doi: 10.22075/jme.2021.22874.2063 [In Persian]
[6] Vajjha RS, Das DK, Namburu PK. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. International Journal of Heat and fluid flow. 2010 Aug 1;31(4):613-21. doi: 10.1016/j.ijheatfluidflow.2010.02.016
[7] Xie H, Li Y, Yu W. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows. Physics Letters A. 2010 May 31;374(25):2566-8. doi: 10.1016/j.physleta.2010.04.026
[8] Leong KY, Saidur R, Kazi SN, Mamun AH. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Applied Thermal Engineering. 2010 Dec 1;30(17-18):2685-92. doi: 10.1016/j.applthermaleng.2010.07.019
[9] Peyghambarzadeh SM, Hashemabadi SH, Hoseini SM, Jamnani MS. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. International communications in heat and mass transfer. 2011 Nov 1;38(9):1283-90. doi: 10.1016/j.icheatmasstransfer.2011.07.001
[10] Narges-Moghadam F, Pournaderi P. Free convection heat transfer of alumina-water nanofluid in an enclosure: assessment of viscosity and conductivity models. International Journal of Engineering and Applied Physics. 2022 Jan 24;2(1):363-80.
[11] Naraki M, Peyghambarzadeh SM, Hashemabadi SH, Vermahmoudi Y. Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. International Journal of Thermal Sciences. 2013 Apr 1;66:82-90. doi: 10.1016/j.ijthermalsci.2012.11.013
[12] Hussein AM, Bakar RA, Kadirgama K, Sharma KV. Heat transfer enhancement using nanofluids in an automotive cooling system. International Communications in Heat and Mass Transfer. 2014 Apr 1;53:195-202. doi: 10.1016/j.icheatmasstransfer.2014.01.003
[13] Ali HM, Ali H, Liaquat H, Maqsood HTB, Nadir MA. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids. Energy. 2015 May 1;84:317-24. doi: 10.1016/j.energy.2015.02.103
[14] Rahmatinejad B, Abbasgholipour M, Mohammadi Alasti B. Experimental Evaluation of Heat Transfer of MF 285 Tractor Radiator, using Nano-fluid AL2O3+ Water. Journal of Agricultural Machinery. 2022 Sep 23;12(3):281-99. doi: 10.22067/jam.2020.58870.0 [In Persian]
[15] Izadkhah MS, Erfan-Niya H, Moradkhani H. A study on the thermophysical properties of water/ethylene glycol based nanofluids using non-equilibrium molecular dynamics and computational fluid dynamics methods. Modares Mechanical Engineering. 2016 Sep 10;16(7):153-62. [In Persian]
[16] Zhu D, Li X, Wang N, Wang X, Gao J, Li H. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Current Applied Physics. 2009 Jan 1;9(1):131-9. doi: 10.1016/j.cap.2007.12.008
[17] Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011 Sep 5;388(1-3):41-8. doi: 10.1016/j.colsurfa.2011.08.005
[18] Septiadi WN, Trisnadewi IANT, Putra N, Setyawan I. Synthesis of hybrid nanofluid with two-step method. InE3S Web of Conferences 2018 (Vol. 67, p. 03057). EDP Sciences. doi: 10.1051/e3sconf/20186703057
[19] Drzazga M, Lemanowicz M, Dzido G, Gierczycki A. Preparation of metal oxide-water nanofluids by the two-step method. Inżynieria i Aparatura Chemiczna. 2012(5):213-5.
[20] Rahmatinejad B. Investigating Thermophysical Properties and Thermal Performance of Al2O3 Nanoparticles in Water and Ethylene Glycol Based Fluids. Journal of Nanostructures. 2022 Jul 1;12(3):642-59. doi: 10.22052/JNS.2022.03.018
[21] Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009 Apr 1;7(2):141-50. doi: 10.1016/j.partic.2009.01.007
[22] Rahmatinejad B, Abbasgholipour M, Mohammadi Alasti B. Investigating thermo-physical properties and thermal performance of Al2O3 and CuO nanoparticles in Water and Ethylene Glycol based fluids. International Journal of Nano Dimension. 2021 Jul 1;12(3):252-71. doi: 10.22034/IJND.2021.681560
[23] Wu S, Zhu D, Li X, Li H, Lei J. Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochimica Acta. 2009 Feb 10;483(1-2):73-7. doi: 10.1016/j.tca.2008.11.006
[24] Choudhary R, Khurana D, Kumar A, Subudhi S. Stability analysis of Al2O3/water nanofluids. Journal of Experimental Nanoscience. 2017 Jan 1;12(1):140-51. doi: 10.1080/17458080.2017.1285445
[25] Rahmatinejad B, Azimpour Shishevan F. Experimental and numerical evaluation of heat transfer of Perkins A4.248 engine radiator using CuO+water nanofluid. Journal of mechanical engineering of Tabriz University. 2023 Jan 21;52(4):105-14. doi: 10.22034/JMEUT.2022.51856.3113 [In Persian]